一个HLS设计的卷积神经网络加速器,并在zynq7020开发板上部署成功。数据集采用的是MNIST手写体,加速的网络为一个拥有4层卷积,2层池化和1层全连接层的自定义小网络,适合初学者学习。
2023-04-11 20:59:26 76.05MB fpga开发 cnn 人工智能 神经网络
卷积神经网络 Python tensorflow keras CNN VGG16 imagenet 预训练权重 人脸识别分类 训练集测试集评估准确率 maxpolling dropout jupyter notebook numpy pandas 数据分析 数据挖掘 深度学习 机器学习 人工智能
2023-04-11 20:51:39 47.9MB 深度学习 cnn 卷积神经网络 数据挖掘
1
基于ZYNQ实现了软硬协同的硬件加速器系统,实现对于LeNet-5卷积神经网络识别MNIST手写集的加速。PL端实现卷积层、池化层、全连接层的并行加速,PS端实现验证测试流程的控制。两者通过AXI总线连接,实现控制信识别结果的传递
2023-04-11 20:24:40 58.97MB fpga开发
1
一个matlab程序-基于小波变换与神经网络的图像压缩
2023-04-11 20:20:08 19KB matlab 图像压缩
1
本文档实现了对ECG信号的处理,通过小波变去噪与检测,以及特征提取,并进行神经网络的训练,对不同身份的人的ECG进行识别。代码可以立即运行。注释很详细。希望能够帮到大家。
2023-04-11 20:19:09 15KB ECG QRS检测 神经网络 小波
1
在笔迹鉴别中为了便于获取特征字符的细微特征,基于线性矩和小波变换提出了提取特征字符纹理特征的方法。小波变换能有效地提取字符的结构特征,而矩能够很好地对其进行描述。在该方法中,一幅特征字图像可以用一个含有52个元素的特征矢量表示,然后通过训练多个神经网络,并应用神经网络集成的方法将其结果合成,对特征空间进行正确分类。分别在特征字和候选人数变化的情况下进行实验,实验结果显示识别准确率较同类算法平均提高百分之五。
2023-04-11 20:17:53 322KB 笔迹鉴别 神经网络集成 小波变换
1
人脸识别技术是模式识别与人工智能的研究热点之一。在生物特征识别中,人脸识别占有极为重要的地位。它在访问控制、司法应用、电子商务和视频监控等领域都有广泛的应用。人脸特征提取是人脸识别过程的核心,特征提取的有效性直接影响到分类的速度和识别的性能
2023-04-11 20:16:44 189KB Gabor 人脸识别 神经网络
1
介绍 基于深度卷积神经网络实现的人脸表情识别系统,系统程序由Keras, OpenCv, PyQt5的库实现,训练测试集采用fer2013表情库。 主要功能 (1)可以通过从本地图片导入系统,或者直接相机进行拍摄等方法对图片和视频进行处理并分析。 (2)可以切换模型对图片进行处理。 实现原理 (1)表情库的建立 目前,研究中比较常用的表情库主要有:美国CMU机器人研究所和心理学系共同建立的Cohn-Kanade AU-Coded Facial Expression Image Database(简称CKACFEID)人脸表情数据库;fer2013人脸数据集等等,这里我们的系统采用fer2013人脸数据集。 (2)表情识别: ①图像获取:通过摄像头等图像捕捉工具获取静态图像或动态图像序列。 ②图像预处理:图像的大小和灰度的归一化,头部姿态的矫正,图像分割等。(改善图像质量,消除噪声,统一图像灰度值及尺寸,为后序特征提取和分类 识别打好基础) (3)特征提取:将点阵转化成更高级别图像表述—如形状、运动、颜色、纹理、空间结构等,?在尽可能保证稳定性和识别率的前提下,对庞大的图像数据进 行降维
2023-04-11 16:16:23 12.01MB 软件/插件 数据集 keras opencv
1
给大家分享一套课程——《深度学习-图神经网络实战课》,提供全部数据与代码。 图神经⽹络模块课程旨在帮助同学们快速掌握深度学习在图模型领域算法及其应⽤项⽬。
2023-04-11 15:28:48 730B 神经网络 深度学习
1
6种算法(线性回归、随机森林、支持向量机、BP神经网络、GRU、LSTM)对电力系统负荷进行预测。通过一个简单的例子。 各种算法(线性回归、随机森林、支持向量机、BP 神经网络、GRU、LSTM)用于电力系统负载预测/电力预测。
2023-04-11 12:09:30 726KB 预测模型 负荷预测 GRU LSTM
1