STM32F405RGT6主控板参数: 板子尺寸:70mmx60mm 供电电压24V,内有24V转5V,5V转3.3V模块 SWD接口 CAN总线通信接口接口 遥控DBUS接口 串口调试接口 PWM输出接口 附件包含了STM32F405RGT6主控板原理图和PCB,使用AD软件打开。 PCB截图: 原理图:
2021-04-22 15:04:12 61.72MB stm32f405rgt6主控板 电路方案
1
LCDOLED控制芯片液晶屏主控LGDP4531 ILI9320 NT35310 RM68042 SSD1306资料合集: ILI9320(ID9320) ILI9325(ID9325) ILI9331(ID9331) ILI9341(ID9341) LGDP4531(ID4531) LGDP4535(ID4535) NT35310(ID5310) NT35510(ID5510) OLED资料 R61505U(ID1505) R61505V(IDB505) RM68042(ID6804) SPFD5408(ID5408) SSD1289(ID8989)
RTL8208B_BCM5421S千兆网cyclone2 FPGA主控板protel99设计硬件原理图PCB+BOM+FPGA Verilog源码+文档说明,4层板设计,包括完整的原理图+PCB+生产BOM文件,CYCLONE2 FPGA设计逻辑源码文件 2、 设计概述 本板作为千兆机内帧的接收板,主要功能是接收千兆机内帧控制器输入的显示数据,经过SDRAM转存后再通过十六个百兆口输出。同时要能接收箱体扫描板输出数据。其中收发关系由本板百兆芯片实现AUTOCROSS。 3、 具体设计 3.1 SDRAM.SCH  使用一片86脚,TSOP封装的SDRAM  可以使用64M,128M的SDRAM。使用64M芯片时21脚(A11)NC  DQM[3:0]接地,CKE接3.3V电源 3.2 FPGA.SCH  FPGA芯片使用EP2C8Q208  配置方式JTAG+AS(EPCS4)  25M时钟和RESET接PLL1的输入端  FPGA附加电路:FLASH,EEPROM,温度传感,天光亮度传感  FLASH的CS#接地,WP#接3.3V。EEPROM的WP接地  千兆的CLK125,RC125,MEDIA,BREAK接PLL2IN  千兆PHY和两个百兆PHY的管理接口复用一对I/O。 千兆PHY地址为00001;百兆PHY地址为10***,01***  百兆芯片共用一个RESET引脚 3.3 POWER.SCH  5V电源输入  FPGA内核电压1.25V使用一片1085_ADJ  板上3.3V电压使用一片2831Y  千兆芯片的2.5V使用一片2831Y  两个百兆芯片的1.8V各使用一片2831Y,需要测试是否可以使用一片 每个百兆芯片需要760mA工作电流 3.4 INDRIVE.SCH  千兆芯片使用BCM5421S  留有光接口与电接口,使用MEDIA选择管脚选择接口类型  引脚设置如下: 信号类型 信号名称 引脚 IO 功能描述 连接方式 与FPGA相连的信号 RXD[7:0] 2,3,4,9,10,11,12,15 O 接收数据,与RXC同步 在100BASE-TX和RGMII模式下,只有RXD[3:0]有效 经过排阻和FPGA相连(如图19) TXD[7:0] 104,103,102,101,100,99,98,97 I 发送数据,与GTXCLK同步 在100BASE-TX和RGMII模式下,只有TXD[3:0]有效 RX_DV 1 O 高电平指示正在接收数据 TX_EN 106 I TXD[7:0]传输使能 GTXCLK 107 I GMII传输时钟,MAC提供的125M时钟,用于同步发数据 RX_ER 113 O RX_DV高,RX_ER高指示从双绞线收的数据有错 INTR#/ ENDET 76 I 中断信号 当检测到ENERGY置高1.3ms 当无ENERGY 1.3s 置低 与FPGA的CLKIN相连 MDC 20 串行数据MDIO的同步时钟,可以达到12.5M 与FPGA相连,与百兆芯片复用 MDIO 21 用于配置MII寄存器的串行数据 与RJ45相连的信号 TRD[0]+- 47,48 IO 网线的收发差分对 与RJ45相连 TRD[1]+- 50,49 IO TRD[2]+- 56,57 IO TRD[3]+- 59,58 IO 与光头相连的信号 SGIN+- 115,116 I SerDes/SGMII差分数据输入 与光头相连 SGOUT+- 118,119 O SerDes/SGMII差分数据输出 指 示 灯 信 号 B_TX 70 O 传输数据指示信号 B_RC 71 O 接收数据指示信号 B_LINK2 72 O 传输速度指示信号 00表示1000BASE-T LINK 高电平使能SERDES模式 B_LINK1 73 O B_FDX 74 I/O pd 高电平使能SGMII模式 全双工指示信号 B_SLAVE 75 I/O pu A-N使能 Master/Slave指示信号 B_QUALITY 85 O 铜线连接质量指示信号 RGMII模式下设置RXC Timing 时 钟 信 号 XTALI 124 I 5421的外接25M参考时钟 接25M晶体 XTALO 125 O RXC 112 O 从输入的模拟信号中恢复的125M时钟,用于同步RXD[7:0] 接FPGA的CLKIN CLK125 18 O MAC参考时钟,由XTALI倍频产生的125M时钟信号输出 接FPGA的CLKIN 接成1或者0的控制信号 PHY[4:0] 63,
RTL8201CL双路DVI Hub CYCLONE2 FPGA主控板PROTEL设计原理图+PCB+BOM+Verilog源码+设计文档,4层板设计,包括完整的原理图PCB设计工程文件,FPGA逻辑源码,已在项目中使用,可以做为你的设计参考。 2. 总体设计概述 本板作为DVI Hub控制板,主要功能是接收计算机输入的DVI数据,分三向下行输出 根据上述功能, Dual link DVI Hub电路板可以分为以下几个部分: 1. FPGA部分。主要包括一块FPGA(EP2C8QF256)和一个EPCS4、一个有源晶振20MHhz 2. DVI receiver 部分。主要包括2片panellink receiver(SII163B)including master and slave 3. DVI send 部分. 主要包括3片 (TFP410A) 4. 存储器部分:一个flash存储器(S25FL040A)和一个IIC(AT24C18) 5. DVI 传输端口部分。包括4个DVI端子, 6. 工控部分:1个温度传感器DS18B20 7. 电源部分 : FPGA的bank1和4、百兆芯片和DVI receiver、DVI send用3.3V电压由一片LDO供电(加一开关电源芯片AOZ1010AI以备选)。 FPGA的bank2和3用1.5V电压由一片 LDO供电。 FPGA的核电压用1.25V电压由一片 LDO供电 8. 百兆接口部分:主要包括1个百兆芯片(RTL8201CL)、1个RJ45端子和1个百兆线圈H1102。时钟由FPGA提供 3、 原理图设计具体说明 3.1 . Power部分 本PCB上用到的电源电压有: +3.3V、+1.2V、1.5V。板上芯片用到的数字电压、模拟电压和数字地、模拟地都可以由这些电压或者GND经过电感(磁珠)隔离产生。  输入的5伏电源首先需要滤波电路和保护电路。保护电路由单向二极管和稳压管组成,滤波电路由100UF电容并联0.1UF电容组成。LED管串联150欧电阻用作电源指示灯。  +3.3和+1.2、1.5 v电源设计: +3.3、+1.5和+1.2由+5经过LM108转换得到,其电路图如图1 图1 +5到+3.3、+1.5和+1.2转换电路 调压芯片的输出端并联100UF和0.1UF的电容以稳定输出电压。 其中加入4个二极管可减少LDO芯片的热量 +3.3和+1.2也可+5经过AOZ1010AI转换得到,其电路图如图2 图2 +5到+3.3和+1.2转换电路 经计算后得出本系统的功率要求不高,考虑到成本和电路机构,选择用LDO芯片电源,外加一个AOZ1010AI转换3.3V电源作备用。 3.2 . drive部分  RTL8201CL有如下复用脚 number name Description mode used 1 LDPS LDPS省电模式,高有效 不使能  此外RTL 8201CL 还有如下配置功能脚 number name Description mode used 1 ISOLATE 芯片与MAC隔离 不使能
松下Panasonic NV-R50、NV-R500摄像机原理图LCD彩色取景器IR3Y06主控原理图
2021-04-20 19:03:02 6.74MB 松下 nv-r50 nv-r500 nv-r50原理图
淘宝上买的diy高速优盘普遍使用银灿主控,可以用这个工具进行分区。功能很强大。
2021-04-18 17:00:29 664KB 银灿主控
1
(NICE 3000)-主控板程序升级操作指导
2021-04-18 14:00:09 331KB 电梯
1
目前智能家居流行的组网方案有4类:基于TcP/IP协议的控制网络;基于EIB(European Installation Bus)总线的控制网络;基于电力载波的控制网络;基于无线协议(zigBee)的控制网络。本文采用TCP/IP协议与CAN总线协议,两种协议取长补短,使整个系统性能更加稳定,功能更加丰富。   完整的智能家居系统包括5个部分:主控模块、电器控制子系统、照明控制子系统、安全控制子系统和网络控制子系统,5个部分功能上各司其职,逻辑上构成一个完整的控制实体。整个系统为人们提供智能、舒适、安全的家庭环境,同时提供远程信息监控能力。   主控模块是智能家居的大脑,子系统是智能家居的
1
基于MSP430F2132Z主控的蓝牙及GSM的智能防盗系统WORD论文文档+ALTIUM设计硬件原理图PCB+软件源码。 本文介绍了一种以TI的MSP430F2132为控制核心的智能防盗系统。主要由控制模块,GSM模块,蓝牙模块以及电源部分组成。使用时将该系统放入贵重物品中且其蓝牙与用户手机蓝牙配对,一旦系统离开用户一定的距离后用户手机会受到系统发来的信息或打过来的电话以达到防盗的效果。本系统具有应用广泛,便携,超低功耗,实用性强,保密性好等优点。 关键词:MSP430 、GSM、蓝牙、智能、防盗 2. 系统方案 2.1 系统分析 本系统主要硬件组成为MSP430F2132单片机, 电源芯片TPS61085和TPS78233,西门子GSM通信模块TC35,蓝牙通信模块BH3. MSP430F2132为主控芯片,系统的命令都由其发出; 电源芯片TPS61085和TPS78233为系统提供稳定的工作电压; GSM模块TC35负责被盗时系统向主人报警及被盗后定位跟踪; 蓝牙通信模块BH3负责与主人手机实时保持联系,“告诉”单片机当前的安全环境(是否被盗)。 2.2 选用TI器件的依据,选型理由,所选TI器件详细介绍 2.2.1 处理器选用TI的MSP430F2132 1.MSP430相比于51单片机系列,MSP430普遍具有超低功耗,强大的处理能力、稳定的工作系统、高性能的模拟技术及片上处理模块等特点。 2.MSP430F2132相比其他MSP430系列单片机,其功耗明显降低,超低功耗使其在电池供电、便携式设备的应用中具有非常优越的表现。而且其唤醒速度显著提高,使系统真正达到节能高效。 3.MSP430F2132体积小,引脚少,但几乎每一个引脚在系统中都有使用,使芯片实现其价值的最大化,同时也相应的降低了成本。 2.2.2 系统供电电源芯片TPS61085和TPS78233 本系统设计采用锂电池便携供电,升压芯片TPS61085用于将锂电池电压3.7V升至4.2V为GSM模块供电。TPS61085具有开关频率高,输出电流大等优点,整体性价比高。广泛应用于手持设备等。TPS78233用于产生3.3V电压,是TI的一款专门由电池供电的单路固定输出LDO,静态电流低,工作温度范围广,输出电压精度高,功耗低,是理想的微处理器供电芯片,是TI专门为MSP430系列设计的一款供电芯片。 2.2.3 SIM卡ESD保护芯片TPD3F303 TPD3F303 是一款用于 SIM 卡接口的三通道集成型 EMI 滤波器。该器件集成了一个 VCC 箝位,用于在 VCC 线路上提供系统级的 ESD 保护。专为抑制那些容易遭受电磁干扰的系统中的 EMI/RFI 噪声而设计。 2.3 设计方案论证 方案一:以51单片机为主控芯片,用大于4.2v的电池通过LM2596-ADJ稳压到4.2V给GSM模块供电,通过ASM1117-3.3稳压到3.3V给单片机及蓝牙供电。 方案二:采用TI超低功耗MSP430F2132为主控芯片,用能量密度大的3.7V锂电池通过TPS61085升压到4.2V给GSM供电,并通过TPS78233从4.2V降压到3.3V给单片机及蓝牙供电。 方案一相对方案二能节约成本,但在同等性能下51单片机功耗远高于MSP430,ASM1117廉价但转换效率较低,LM2596-ADJ为降压芯片,要稳压到4.2V得给系统提供大于4.2v的电源。而TPS61085可以把小于4.2V的电压升到4.2V.且TPS61085和TPS78233效率高。 由于我们的系统对体积要求严格,不能装备过大的电池,导致功耗要求严格。而方案一相对方案二功耗大了很多,且现在的高能移动电池一般为锂电池,电压为3.7V,电池电量快用完时电压大约只到2V,方案一的降压即便在两块锂电池串联的情况下也不满足要求,但方案二TI公司的TPS61085却可以将2-3.7V的电压稳到4.2V,所以我们最终采用方案二。 3. 系统硬件设计
基于MSP430的自行车户外运动系统论文WORD文档+AD设计硬件原理图PCB+软件源码: 摘 要 本系统基于MSP430F169,主要由GPS模块,传感器模块、显示模块和充电模块组成。基本功能为测量温度湿度光照度等环境参数,GPS定位测速等。除此之外,系统自带实时钟,还具有路径记录功能,并且可以通过上位机,在Google Earth上绘制出记录的路径。下位机通过点阵LCD显示,背光由PWM控制,配合光照度传感器可以做到自适应背光。系统用锂电池供电,带充电模块,整体小巧灵活,人机界面友好,可以用于单车、登山等户外运动上。 2. 系统方案 整个系统由若干模块构成,系统方案框图如图2.1所示: 图2.1 系统框图 系统由GPS、SHT10、ON9658等传感器模块、LCD显示模块、EEPROM存储模块、RTC模块、通讯模块和锂电池充电模块构成。 主要思路: 硬件方面:MSP430F169主控,处理各个传感器测量的信息;LCD实时显示;EEPROM存储路径信息;通讯模块配合上位机使用,通过USB转串口,把记录的数据上传到PC机;USB口同时起到锂电池充电的作用。 对外围模块的电源管理,采用跟MCU最小系统分开供电的方法,这样就可以随时关闭暂时不用的传感器,以节省电能。