image模型,YOLOv3 (Size = 237 mb, moderate performance and accuracy, with a moderate detection time)
2023-04-08 02:52:43 236.65MB imageai
1
coco训练集5k.part(2014),包含coco训练集的图片路径(相对路径)如果发生找不到图片的情况,可修改为绝对路径
2023-04-07 10:36:31 225KB coco训练集 yolov3
1
image模型,(Size = 34 mb, optimized for speed and moderate performance, with fast detection time)
2023-03-27 13:37:26 33.81MB imageai
1
YOLOv5权重文件:S模型。yolov5系列将在2020年第2/3季度进行架构研究和开发,以提高性能。更新可能包括来自yolov4的CSP瓶颈,以及PANet或BiFPN head特性。
2023-03-24 19:06:48 111.54MB YOLOv5权重
1
多摄像机人员跟踪和重新识别(使用视频) 用于“检测/跟踪”和“重新识别”不同摄像机/视频中的个人的简单模型。 介绍 该项目旨在跟踪不同角度的视频中的人。 用于完成此任务的框架分别依靠MOT和ReID来跟踪和重新标识人类的ID。 可以使用YOLO_v3或YOLO_v4来完成跟踪,并且ReID依赖于KaiyangZhou的Torchreid库。 安装 如果您的计算机上未安装 ,请下载 克隆存储库 git clone https : // github . com / samihormi / Multi - Camera - Person - Tracking - and - Re - Identification 创建项目环境 cd Multi - Camera - Person - Tracking - and - Re - Identification conda create
2023-03-22 15:57:54 50.11MB tracking video computer-vision tensorflow
1
为了解决在复杂背景以及人流密集且互相遮挡的场景下, 对人流密度进行估计精度低的问题, 提出了基于YOLOv3增强模型融合的方法进行人流密度估计. 首先将数据集分别进行头部标注和身体标注, 生成头部集和身体集. 然后用这两个数据集分别训练两个YOLOv3增强模型YOLO-body和YOLO-head, 最后使用这两个模型在相同的测试数据集上推理, 将其输出结果进行极大值融合. 结果表明基于YOLOv3增强模型融合的方法, 与原始目标检测方法和密度图回归的方法相比精度提高了4%, 且具有较好的鲁棒性.
1
车祸事故项目 道路交叉口经常发生交通事故。 一个能够在发生事故时发出警告的系统是对事故做出快速响应的必要条件。 我们的项目能够检测到尤其在道路交叉口发生的“ T”形事故。 在项目中,通过查看被检测对象的坐标相交来进行事故检测。 Darknet YOLO V3用于事故检测。 通过查看汽车,摩托车,自行车和公共汽车的坐标来进行事故检测。 该算法在白天碰撞视频期间在单车道道路上的“ T”形碰撞中正常工作。 该项目是在Ubuntu 18.04操作系统上开发的。 在您自己的计算机上运行项目 在计算机上安装 。 将将Darknet构建后创建的“ darknet.so”文件粘贴到项目目录中,并将文件名更改为“ libdarknet.so”。 创建虚拟环境(Python 3.6) 上传所需的库可在requirements.txt 。 在项目目录中时, pip install -r requirem
2023-03-15 15:54:19 11.94MB image-classification darknet yolov3 Python
1
YOLOV3:只看一次目标检测模型在Pytorch当中的实现-替换高效网络主干网络 2021年2月8日更新:加入letterbox_image的选项,关闭letterbox_image后网络的地图得到大幅度提升。 目录 性能情况 训练数据集 权值文件名称 测试数据集 输入图片大小 行动计划0.5:0.95 行动计划0.5 挥发性有机化合物07 + 12 VOC-Test07 416x416 -- 78.9 所需环境 火炬== 1.2.0 文件下载 训练所需的efficiencynet-b2-yolov3的权重可以在百度云下载。链接: : 提取码:hiuq其他版本的efficiencynet的权重可以将YoloBody(Config,phi = phi,load_weights = False)的load_weights参数设置成True,从而获得。 预测步骤 a,使用预训练权
2023-03-08 21:17:47 5.32MB 系统开源
1
使用yolov3-tiny训练一个人脸检测器-附件资源
2023-02-14 01:43:20 106B
1
YOLOv3树叶识别实践
2023-02-13 21:18:47 11.5MB YOLOv3树叶识别实践
1