基于YOLOv3增强模型融合的人流密度估计

上传者: 38516491 | 上传时间: 2023-03-15 22:18:19 | 文件大小: 1.3MB | 文件类型: PDF
为了解决在复杂背景以及人流密集且互相遮挡的场景下, 对人流密度进行估计精度低的问题, 提出了基于YOLOv3增强模型融合的方法进行人流密度估计. 首先将数据集分别进行头部标注和身体标注, 生成头部集和身体集. 然后用这两个数据集分别训练两个YOLOv3增强模型YOLO-body和YOLO-head, 最后使用这两个模型在相同的测试数据集上推理, 将其输出结果进行极大值融合. 结果表明基于YOLOv3增强模型融合的方法, 与原始目标检测方法和密度图回归的方法相比精度提高了4%, 且具有较好的鲁棒性.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明