yolov5-master.zip 源代码
2021-10-28 20:12:01 847KB yolo v5 目标检测 识别
1
weights.zip yolo v5 weights
2021-10-28 20:12:00 807.62MB yolo v5 权重 weight
1
YOLO_V5的官方预训练权重,包含S、M、L、X四个模型。
2021-10-18 17:12:25 289.7MB 预训练模型 YOLO_V5 目标检测
1
YOLOv5 主代码。YOLOv5 的表现要优于谷歌开源的目标检测框架 EfficientDet,尽管 YOLOv5 的开发者没有明确地将其与 YOLOv4 进行比较,但他们却声称 YOLOv5 能在 Tesla P100 上实现 140 FPS 的快速检测;相较而言,YOLOv4 的基准结果是在 50 FPS 速度下得到的.
2021-09-15 20:36:46 1006KB yolo yolo-v5
1
Yolov5 +使用PyTorch进行深度排序 介绍 该存储库包含PyTorch YOLOv5的简化版( )。 它过滤掉不是人的所有检测。 然后,将对人员的检测传递给跟踪人员的深度排序算法( )。 它仅跟踪人员这一事实背后的原因是,深度关联度量仅在人员数据集上进行训练。 描述 该实现基于两篇文章: 使用深度关联指标进行简单的在线和实时跟踪 YOLOv4:物体检测的最佳速度和准确性 要求 安装了所有requirements.txt依赖关系的Python 3.8或更高版本,包括torch> = 1.7。 要安装运行: pip install -U -r requirements.txt 所有依赖项都包含在关联的docker映像中。 Docker要求是: nvidia-docker Nvidia驱动程序版本> = 440.44 在运行跟踪器之前 递归克隆存储库: git clo
2021-05-25 17:09:44 665KB real-time video pytorch computer-camera
1