FixMatch 这是FixMatch的非官方PyTorch实施。 Tensorflow的官方实现在。 此代码仅在FixMatch(RandAugment)中可用。 结果 CIFAR10 #标签 40 250 4000 纸(RA) 86.19±3.37 94.93±0.65 95.74±0.05 这段代码 93.60 95.31 95.77 累积曲线 * 2020年11月。修复EMA问题后重新测试。 CIFAR100 #标签 400 2500 10000 纸(RA) 51.15±1.75 71.71±0.11 77.40±0.12 这段代码 57.50 72.93 78.12 累积曲线 *使用以下选项进行训练--amp --opt_level O2 --wdecay 0.001 用法 火车 通过CIFAR-10数据集的4000个标记数据训练模
2024-08-04 22:38:58 17KB pytorch semi-supervised-learning deeplearning
1
二维卷积实验(平台课与专业课要求相同) 1.手写二维卷积的实现,并在至少一个数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示) 2.使用torch.nn实现二维卷积,并在至少一个数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示) 3.不同超参数的对比分析(包括卷积层数、卷积核大小、batchsize、lr等)选其中至少1-2个进行分析 4.使用PyTorch实现经典模型AlexNet并在至少一个数据集进行试验分析 (平台课同学选做,专业课同学必做)(无GPU环境则至少实现模型) 5.使用实验2中的前馈神经网络模型来进行实验,并将实验结果与卷积模型结果进行对比分析(选作) 空洞卷积实验(专业课) 1.使用torch.nn实现空洞卷积,要求dilation满足HDC条件(如1,2,5)且要堆叠多层并在至少一个数据集上进行实验,从训练时间、预测精度、Loss 2.变化等角度分析实验结果(最好使用图表展示)将空洞卷积模型的实验结果与卷积模型的结果进行分析比对...... 残差网络实验(专业课) 1.实现给定 2.
2024-08-03 21:20:52 750KB 交通物流 pytorch pytorch 深度学习
1
GFL框架 GFL是基于pytorch的联合学习框架,它提供了不同的联合学习算法。 GFL还是Galaxy学习系统(GLS)的基础结构。 GLS是基于区块链和GFL的联合学习系统。 目前,GFL部分首先是开源的,而区块链部分将很快开源。 除了传统的联邦学习算法,GFL还提供了一种基于模型提炼的新联邦学习算法。 开发人员可以选择不同的联合学习算法来训练他们的模型。 对GFL对象或对联邦学习研究的可以扫描末尾的二维码加入GFL交流群进行交流哦〜 GFL基础框架设计 框架设计参考PaddleFL 准备工作 当我们想使用GFL时,我们需要指定几种策略并生成FL作业。 FederateStrate
2024-07-30 13:34:36 216KB algorithm decentralized blockchain pytorch
1
基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip
2024-07-30 00:55:43 111.99MB pytorch pytorch
1
基于EfficientViT(Efficient Vision Transformer)优化yolov8的实现,这是一种改进的视觉变换器网络,专为图像识别和处理任务设计。EfficientViT通过采用创新的网络结构和注意力机制,实现了高效的图像特征提取和表示。 提供了EfficientViT的完整PyTorch实现代码。 对每个关键部分进行了详细的解释和中文注释,包括卷积层、注意力机制、残差连接等。 融合实现详解: 提供了YOLOv8-EfficientViT融合模型的完整PyTorch实现代码。 对代码中每个关键模块(如EfficientViT的注意力机制在YOLOv8中的应用)进行详细注释和解释。 结构优化分析: 实现如何通过EfficientViT优化YOLOv8的网络结构,特别是在特征提取和注意力机制方面。 讨论这种融合如何提升模型对复杂场景的识别能力和整体性能。 模型配置与调整: 介绍如何根据不同的目标检测需求调整YOLOv8-EfficientViT的配置。
2024-07-19 23:14:02 23.89MB pytorch 网络 目标检测 python
1
PyTorch视频压缩 PyTorch实施和视频压缩基准 更新 2020.08.02:HEVC,UVG,MCL-JCV,VTL数据集的上载基准。 2020.08.01:上载PyTorch实施 基准 HEVC A类数据集 HEVC B类数据集 HEVC C类数据集 HEVC D类数据集 HEVC E类数据集 UVG数据集 MCL-JCV数据集 VTL数据集 接触 如果您想添加论文结果或有任何疑问,请提出问题或联系: Zhihao Hu: huzhihao@buaa.edu.cn
2024-07-18 17:59:16 10.74MB Python
1
SSD(Single Shot MultiBox Detector)是一种在深度学习领域广泛应用的目标检测算法,它结合了卷积神经网络(CNN)和区域建议网络(RPN),在单一的前向传播过程中完成目标定位和分类,大大提高了检测速度。PyTorch是一个开源的Python库,用于构建和训练深度学习模型,因其简洁易用的接口而广受欢迎。在这个名为"ssd-pytorch-master.zip"的压缩包中,我们很可能找到了一个实现SSD目标检测算法的PyTorch版本。 该压缩包可能包含以下关键组件: 1. **源代码**:`ssd.py` - SSD架构的实现,包括基础的网络结构,如VGG16或MobileNetV2,以及SSD特有的多尺度预测层。 2. **损失函数**:`loss.py` - SSD损失函数的定义,通常包括分类损失和定位损失。 3. **数据预处理**:`data.py` - 用于处理图像数据,如归一化、缩放、填充等,使其适应网络输入的要求。 4. **训练脚本**:`train.py` - 包含训练模型的逻辑,如定义超参数、加载数据集、初始化模型、定义优化器等。 5. **测试脚本**:`test.py` - 用于验证模型性能,评估精度和速度。 6. **配置文件**:`.yaml`或`.json` - 存储模型参数、训练设置等信息。 7. **预训练权重**:`weights.pth` - 可能提供预训练的模型权重,用于快速启动训练或微调。 8. **数据集处理工具**:可能包括读取PASCAL VOC或COCO等标准数据集的脚本。 9. **可视化工具**:如`visualize.py`,用于展示检测结果,帮助理解和调试模型。 SSD的关键技术点包括: - **Multi-scale Feature Maps**:SSD利用不同尺度的特征图来检测不同大小的目标,这样可以同时处理大范围尺寸的目标,提高检测效果。 - **Default Boxes (也称为Anchor Boxes)**:每个位置的默认框具有不同的宽高比和比例,覆盖了多种可能的目标尺寸和形状。 - **位置敏感得分映射**:通过位置敏感的卷积层,对每个默认框的分类和定位进行独立预测,提高了精度。 - **多任务损失**:结合了分类损失和回归损失,一起优化目标检测任务。 在PyTorch环境中实现SSD,你需要理解PyTorch的张量操作、模块化网络设计以及自动梯度计算。此外,理解数据预处理、训练循环和模型保存/加载机制也是至关重要的。这个项目提供了从零开始构建SSD模型的机会,对于学习深度学习和目标检测的实践者来说是一个宝贵的资源。你可以通过运行和调整这个项目,深入了解SSD的工作原理,并尝试优化模型性能。
2024-07-16 11:33:12 5.33MB pytorch SSD 深度学习 机器语言
1
github官网下载的,深度学习 with PyTorch 中文版, 项目网页地址:https://tangshusen.me/Deep-Learning-with-PyTorch-Chinese/#/ 基本摘录版(Essential Excerpts),共141页, 内容包括以下五个部分: 1.深度学习与PyTorch简介 2.从一个张量开始 3.使用张量表示真实数据 4.学习机制 5.使用神经网络拟合数据
2024-07-12 14:59:56 56.41MB python pytorch 深度学习
1
离线强化学习(Offline Reinforcement Learning, ORL)是一种机器学习方法,它允许算法通过观察预先收集的数据集来学习策略,而无需与环境实时交互。PyTorch 是一个流行的深度学习框架,它提供了灵活的计算图和易于使用的API,使得实现复杂的深度强化学习算法变得相对简单。本资源集中了七种基于PyTorch实现的离线强化学习算法,分别是:行为克隆(Behavior Cloning, BC)、BCQ、BEAR、TD3-BC、保守Q学习(Conservative Q-Learning, CQL)、独立Q学习(Independent Q-Learning, IQL)以及优势加权Actor-Critic(Advantage Weighted Actor-Critic, AWAC)。 1. **行为克隆(Behavior Cloning, BC)**:这是一种监督学习方法,通过模仿专家示例的动作来学习策略。BC的目标是最大化动作概率的似然性,即让模型预测的数据尽可能接近于专家数据。 2. **BCQ(Bootstrapped DQN with Behavior Cloning)**:该算法结合了行为克隆和Bootstrapped DQN,旨在处理离线数据的分布偏移问题。它使用多个Q函数的集合,并结合行为克隆来提高稳定性。 3. **BEAR(Bootstrapped Environments with Adversarial Reconstructions)**:BEAR是一种确保策略接近原始数据分布的方法,通过最小化策略动作与离线数据中的动作之间的距离,避免了样本分布不匹配导致的问题。 4. **TD3-BC(Twin Delayed Deep Deterministic Policy Gradient with Behavior Cloning)**:TD3是DDPG(Deep Deterministic Policy Gradient)的一个改进版本,而TD3-BC在TD3的基础上加入了行为克隆,进一步提高了离线学习的稳定性。 5. **保守Q学习(Conservative Q-Learning, CQL)**:CQL引入了一个额外的损失项,以防止Q值过高估计,从而保持对离线数据分布的保守估计,避免选择超出数据范围的行动。 6. **独立Q学习(Independent Q-Learning, IQL)**:IQL是针对多智能体强化学习的一种方法,但在离线设置下也可以应用。每个智能体独立地学习Q值函数,以最大化其自己的长期奖励。 7. **优势加权Actor-Critic(Advantage Weighted Actor-Critic, AWAC)**:AWAC结合了Actor-Critic架构和优势函数,通过在目标策略更新中考虑优势函数,使得策略更倾向于选择在离线数据中表现良好的动作。 这些算法在不同的强化学习环境中进行测试,如MuJoCo模拟器中的连续控制任务,通过比较它们的性能,可以深入理解各种离线强化学习方法的优缺点。对于研究者和开发者来说,这个资源包提供了一个宝贵的平台,用于探索和比较不同的离线学习策略,有助于推动强化学习领域的发展。在实际应用中,可以根据特定任务的特性选择合适的算法,或者将这些方法作为基础进行进一步的研究和改进。
2024-07-09 17:15:53 26.45MB pytorch pytorch 强化学习
1
在这个“0基础深度学习项目3:基于pytorch实现天气识别”的教程中,我们将探索如何使用PyTorch这一强大的深度学习框架来构建一个模型,该模型能够根据图像内容判断天气状况。这个项目对于初学者来说是一个很好的实践机会,因为它涵盖了深度学习的基础概念,包括图像分类、卷积神经网络(CNN)以及训练和验证模型的基本步骤。 我们要理解数据集在深度学习中的重要性。数据集是模型训练的基础,它包含了一系列用于训练和测试模型的样本。在这个项目中,你可能需要一个包含不同天气条件下的图像的数据集。每个样本应有对应的标签,表明该图像显示的是晴天、阴天、雨天、雪天等。在实际操作中,你可能需要下载或创建这样的数据集,确保其均衡,即各种天气类型的样本数量相近,以避免模型过拟合某一类。 接下来,我们将使用Python和PyTorch库来预处理数据。这包括将图像转换为合适的尺寸,归一化像素值,以及将标签编码为模型可以理解的形式。预处理数据是提高模型性能的关键步骤,因为它帮助减少噪声并使模型更容易学习特征。 进入模型构建阶段,我们将利用PyTorch的nn.Module子类化创建自定义的CNN架构。CNN因其在图像处理任务上的优异性能而广泛使用。一个典型的CNN包括卷积层、池化层、激活函数(如ReLU)和全连接层。在设计模型时,你需要考虑网络的深度、宽度,以及是否使用批量归一化和dropout等正则化技术来防止过拟合。 接下来是模型的训练过程。我们将定义损失函数(如交叉熵损失)和优化器(如Adam或SGD),然后使用训练数据集迭代地调整模型参数。每一轮迭代包括前向传播、计算损失、反向传播和参数更新。同时,我们还需要保留一部分数据进行验证,以监控模型在未见数据上的表现,避免过拟合。 在模型训练完成后,我们需要评估模型性能。这通常通过计算验证集上的准确率来完成。如果模型达到满意的性能,你可以进一步将其应用于新的天气图像上,预测天气情况。 项目可能会涉及模型的保存和加载,以便将来可以快速部署和使用。PyTorch提供了方便的方法来保存模型的权重和架构,这样即使模型训练后也可以随时恢复。 这个基于PyTorch的天气识别项目提供了一个很好的平台,让你了解深度学习从数据准备到模型训练的完整流程。通过实践,你可以掌握如何运用深度学习解决实际问题,并对PyTorch有更深入的理解。在完成这个项目后,你将具备基础的深度学习技能,为进一步探索更复杂的计算机视觉任务打下坚实基础。
2024-07-08 14:13:37 92.01MB 数据集
1