焊点检测.hdev 现在锂电池能源行业有需要检测焊接质量方面的需求,通常是使用3D线扫相机拿到焊接表面点云,这样我们就可以根据所获得的点云数据对焊接质量进行一个检测,具体的检测过程在附件内部,采用halcon算法 现在锂电池能源行业有需要检测焊接质量方面的需求,通常是使用3D线扫相机拿到焊接表面点云,这样我们就可以根据所获得的点云数据对焊接质量进行一个检测,具体的检测过程在附件内部,采用halcon算法 现在锂电池能源行业有需要检测焊接质量方面的需求,通常是使用3D线扫相机拿到焊接表面点云,这样我们就可以根据所获得的点云数据对焊接质量进行一个检测,具体的检测过程在附件内部,采用halcon算法
2024-08-15 13:36:12 2KB halcon
1
在给定的压缩包文件中,我们关注的主要知识点围绕C#编程、HALCON机器视觉算法、SMT贴片机操作、相机标定、MARK点校正以及贴合补偿算法。以下是对这些关键概念的详细解释: 1. **C#编程**:C#是一种面向对象的编程语言,广泛用于开发Windows桌面应用、游戏、移动应用以及Web应用。在这个项目中,C#被用来编写控制SMT贴片机和处理图像识别的源代码。 2. **Halcon机器视觉算法**:HALCON是MVTec公司开发的一种强大的机器视觉软件库,提供了丰富的图像处理和模式匹配功能。在SMT(Surface Mount Technology)领域,Halcon的模板匹配功能用于识别PCB板上的元件,确保准确无误地进行贴片。 3. **SMT贴片机**:SMT贴片机是电子制造中的关键设备,用于自动将表面贴装器件(SMD)精确地贴附到PCB板上。它依赖于高精度的定位和视觉系统来完成任务。 4. **相机标定**:相机标定是机器视觉中的重要步骤,目的是获取相机的内参和外参,以便将图像坐标转换为真实世界坐标。这有助于提高定位和测量的准确性,确保SMT贴片机能够正确识别和放置元件。 5. **MARK点4点校正**:MARK点是PCB板上的特殊标识,用于帮助相机定位。4点校正是一种几何校准方法,通过识别四个MARK点来确定相机与PCB板之间的相对位置和旋转,从而提高贴片精度。 6. **2点补偿**:这是一种简化的校准方法,通常用于调整因机器或环境变化导致的微小误差。通过两个参考点,可以计算出必要的补偿值,确保贴片机的贴装位置更准确。 7. **贴合补偿算法**:在SMT过程中,由于各种因素(如机械误差、温度变化等),实际贴装位置可能与理想位置有偏差。贴合补偿算法通过对这些偏差进行预测和修正,确保元件能准确贴合到PCB板上。 这些技术的综合应用使得SMT贴片机能够高效、精确地完成工作,提高了电子制造的自动化水平和产品质量。压缩包中的源程序和算法实现提供了深入学习和理解这些概念的实际案例,对于从事相关工作的工程师来说是一份宝贵的资源。
2024-08-08 10:57:42 10.29MB halcon 模板识别
1
Halcon常用算子归类脑图
2024-08-02 18:34:55 74KB Halcon
1
在本文中,我们将深入探讨如何使用Qt框架与海康威视工业相机进行集成,实现图像采集、在线转换为Halcon变量以及实时显示的功能。这个解决方案特别强调了独立封装、多相机支持以及对黑白和彩色相机的兼容性。 Qt是一个跨平台的应用程序开发框架,广泛用于创建用户界面和其他桌面、移动或嵌入式系统的软件。它提供了丰富的库和工具,使得开发者能够方便地构建图形化界面,并与其他系统组件如硬件设备进行交互。 海康威视是一家全球领先的视频监控产品供应商,其工业相机广泛应用于自动化、检测等领域。这些相机通常提供高速、高分辨率的图像采集能力,适合于精确的机器视觉应用。 将Qt与海康威视工业相机结合,可以实现以下关键功能: 1. **图像采集**:通过海康威视的SDK(Software Development Kit),开发者可以编写代码来控制相机,设置参数如曝光时间、增益等,以获取所需质量的图像。Qt可以作为用户界面,显示实时采集的图像预览。 2. **在线转换为Halcon变量**:Halcon是德国MVTec公司的一款强大的机器视觉软件,提供了丰富的图像处理算法。在Qt中,可以调用Halcon的API将接收到的图像数据转换为Halcon可识别的变量,以便执行如模板匹配、形状识别等复杂的图像分析任务。 3. **支持多相机**:设计一个灵活的架构,允许同时连接和管理多个海康威视相机。这可能涉及到线程管理和数据同步,确保每个相机的图像数据能正确处理并独立显示。 4. **黑白和彩色相机的支持**:不同的工业应用可能需要不同类型的相机,因此软件需要能够适应黑白和彩色相机。这涉及到处理不同格式的图像数据,并可能调整处理算法以适应不同的颜色空间。 5. **独立封装**:为了提高代码的复用性和维护性,整个流程应该被封装成独立的模块。例如,可以创建一个“相机管理”类,负责与相机的通信和图像处理;一个“Halcon转换器”类,用于将图像数据转换为Halcon变量;还有一个“显示”类,用于在Qt界面中展示图像。 6. **文档与示例**:提供的"联合海康威视工业相机采集在线转变量并显示.html"可能是详细的步骤说明或者代码示例,帮助开发者理解如何实现这一功能。"1.jpg"、"2.jpg"、"3.jpg"可能是截图或者流程图,辅助解释各个步骤。而"联合海康威视工业相机采集在线转变.txt"可能包含了更多技术细节或代码片段。 这个项目展示了如何利用Qt的图形界面和海康威视的硬件能力,结合Halcon的强大图像处理功能,构建一个高效、灵活的工业相机应用。这种集成方案对于自动化生产线、质量检测等应用场景具有重要意义。
2024-07-30 11:01:19 3.86MB
1
HALCON中文手册.pdf
2024-07-29 09:59:56 94.23MB 计算机视觉 halcon
1
在IT领域,文本识别是一项重要的技术,特别是在自动化和人工智能应用中。本项目“qt halcon tesseract-ocr 文字识别”结合了三个关键技术:Qt、Halcon和Tesseract OCR,用于实现图像处理和高精度的文字识别。以下是这些技术的详细说明。 Qt是一个跨平台的C++库,用于开发图形用户界面(GUI)应用程序。它提供了丰富的功能,包括窗口管理、事件处理、网络通信、数据库支持等。在本项目中,Qt被用作图形界面的基础,开发者可以利用Qt的API来绘制旋转矩形,这在处理图像时非常有用,例如在定位和框选特定的文本区域。 Halcon是德国MVTec公司开发的一种强大的机器视觉软件。它包含了各种图像处理算法,如形状匹配、模板匹配、1D/2D码识别等。在本项目中,Halcon的区域抠图功能被用来提取图像中的文字区域。通过定义和搜索特定的形状,Halcon能够精确地从复杂背景中分离出文字部分,为后续的文字识别做好准备。 Tesseract OCR(光学字符识别)是由Google维护的一个开源OCR引擎。它能识别多种语言的文字,并且可以通过训练提高对特定字体或格式的识别效果。在“qt halcon tesseract-ocr 文字识别”项目中,Tesseract是负责实际的文字识别任务。在Halcon完成图像预处理后,Tesseract会分析图像中的像素模式,将其转换为可读的文本。 在具体操作流程上,项目可能首先使用Qt绘制并显示图像,然后通过用户交互或自动算法确定需要识别的区域,利用Halcon进行图像处理,找到文字区域。接着,将处理后的图像输入到Tesseract OCR,由其完成文字识别。识别的结果可以展示在Qt界面上,或者保存到文件或数据库中。 为了实现这个流程,开发者需要掌握Qt编程,理解Halcon的图像处理算法,以及如何训练和配置Tesseract。项目文件“WordDetect”可能包含了实现这一流程的具体代码,包括图像处理函数、用户界面逻辑和OCR接口调用等。 “qt halcon tesseract-ocr 文字识别”项目综合运用了图像处理和自然语言处理技术,为需要从图像中提取文字的应用提供了一个高效的解决方案。无论是工业自动化、文档数字化还是其他相关领域,这种技术都有着广泛的应用前景。
2024-07-17 14:22:33 12KB halcon tesseract
1
基于ti KeyStone C66x多核定点/浮点DSP TMS320C665x,单核TMS320C6655和双核TMS320C6657管脚pin to pin兼容,同等频率下具有四倍于C64x+器件的乘累加能力; 主频1.0/1.25GHz,每核运算能力可高达40GMACS和20GFLOPS,包含2个Viterbi协处理器和1个Turbo协处理解码器,每核心32KByte L1P、32KByte L1D、1MByte L2,1MByte多核共享内存,8192个多用途硬件队列,支持DMA传输;
2024-07-14 11:24:00 1.19MB 图像采集 DSP
1
【特权同学】的FPGA图像采集及显示工程文件是一份涉及数字系统设计的重要资源,主要应用于FPGA(Field-Programmable Gate Array)开发领域。FPGA是一种可编程逻辑器件,能够根据用户的需求进行硬件配置,广泛应用于图像处理、通信、嵌入式系统等众多领域。这份工程文件将涵盖以下几个关键知识点: 1. **图像采集**:图像采集是系统的第一步,通常通过摄像头或其它传感器完成。在FPGA中,图像采集可能涉及到ADC(模拟到数字转换器),它将模拟信号转换为数字信号,以便FPGA可以处理。此外,还可能涉及同步时序控制,如像素时钟和行/场同步信号的生成。 2. **数据接口协议**:常见的图像传感器接口有MIPI CSI-2、LVDS、SPI、Parallel等。理解并实现这些接口对于从传感器获取数据至关重要。例如,MIPI CSI-2是一种高速串行接口,常用于手机和嵌入式设备中的图像传感器。 3. **图像处理**:FPGA在图像处理中可以执行多种操作,如色彩空间转换(RGB to YCbCr)、滤波(如均值滤波、中值滤波)、缩放、旋转等。这些处理可以通过并行计算能力高效地在FPGA中实现。 4. **显示接口**:处理后的图像需要通过某种显示接口传输到显示器。常见的显示接口有LVDS、HDMI、VGA等。在FPGA设计中,需要理解和实现这些接口的时序特性,确保图像数据正确无误地传输。 5. **存储器管理**:FPGA中的图像数据通常需要临时存储,这就涉及到BRAM(Block RAM)或分布式RAM的使用。合理分配和管理内存资源对于实现高效的数据流处理至关重要。 6. **VHDL/Verilog编程**:FPGA设计通常使用硬件描述语言(HDL)如VHDL或Verilog进行编程。掌握这两种语言的基本语法和高级特性,如状态机、数据并行处理、IP核复用等,是实现图像采集和显示的关键。 7. **IP核使用**:FPGA厂商通常提供预封装好的IP核,如ADC控制器、MIPI CSI-2接收器、HDMI发送器等。利用这些IP核可以快速构建复杂的系统,并减少设计错误。 8. **仿真与调试**:在实现设计前,通常需要使用硬件描述语言的仿真工具进行功能验证。而在硬件上运行时,可能还需要借助JTAG或其它调试工具进行在线调试。 9. **综合与配置**:完成设计后,需要使用Synthesis工具将HDL代码转化为逻辑门电路,并通过Place and Route工具布局布线,最后生成配置文件下载到FPGA。 10. **实时性能优化**:在满足功能需求的同时,还需要关注系统的实时性能,如图像处理速率、功耗和面积效率等,这可能需要不断迭代优化设计。 【特权同学】的FPGA图像采集及显示工程文件涵盖了从图像采集、处理到显示的全过程,是学习和实践FPGA开发,特别是图像处理应用的宝贵资料。通过深入研究和实践,开发者可以提升对FPGA硬件设计、接口协议、图像处理算法以及HDL编程的理解和应用能力。
2024-07-10 14:46:02 113.82MB fpga开发
1
开发环境:vs2022 halcon 23.0.5 海康提供的类;MVCamera.cs 实例化海康提供的类,获取图像,然后在halcon 中实现模板匹配。 自己做一个test.shm模板存储在debug文档中,就可以实现模板匹配。 【核心代码】 1.定义相机对象,可以实现图像缩放平移,有些smartwindow 不稳定,可以换成Hwindcontrol控件显示 public Form1() { InitializeComponent(); hwindow = hSmartWindowControl1.HalconWindow;//初始化窗口变量s w_width = hSmartWindowControl1.Size.Width; w_height = hSmartWindowControl1.Size.Height; this.MouseWheel = new System.W
2024-06-27 16:29:55 28.4MB halcon 模板匹配 机器视觉
1
TMS320DM642 图像采集处理系统 设计及实现
2024-06-17 00:32:55 254KB 图像采集处 TMS320
1