### LPDDR4(低功耗双倍数据速率4)JESD209-4E标准解析 #### 标准概述 《低功耗双倍数据速率4 (LPDDR4)》是JEDEC(固态技术协会)发布的一项重要标准,其最新版本为JESD209-4E,修订于2021年6月,并于2024年6月正式发布。这一标准主要针对低功耗内存技术进行了详细规定,旨在促进内存产品的标准化、互换性和性能提升。 #### LPDDR4技术简介 **LPDDR4**是一种专为移动设备设计的低功耗动态随机存取内存技术。它继承了前代LPDDR3的优点,并在带宽、能效等方面进行了显著改进。该技术广泛应用于智能手机、平板电脑等便携式电子设备中,以满足这些设备对高性能与低功耗的双重需求。 #### 技术特点 1. **高带宽:**LPDDR4支持高达3200MT/s的数据传输速率,相较于LPDDR3有了显著提高。 2. **低功耗:**通过多种节能机制和技术,如更低的工作电压(1.1V),LPDDR4能够在保持高性能的同时大幅度降低能耗。 3. **可扩展性:**LPDDR4支持更灵活的容量扩展方案,包括多芯片封装技术,以满足不同应用的需求。 4. **可靠性与稳定性:**采用了先进的纠错码(ECC)技术,提高了数据传输的可靠性和系统的整体稳定性。 5. **易用性:**LPDDR4简化了设计复杂度,使得设计者能够更容易地将其集成到各种系统中。 #### 技术细节 - **工作电压:**LPDDR4采用1.1V的标准工作电压,相比前代产品降低了功耗。 - **数据传输速率:**最高可达3200MT/s,有效提升了数据吞吐量。 - **地址/命令/控制信号:**这些信号的接口被优化,以提高信号完整性并减少电磁干扰。 - **电源管理:**引入了多种电源管理模式,如深度睡眠模式,进一步降低了功耗。 - **存储器组织:**LPDDR4支持更高密度的存储单元组织,有助于实现更大容量的内存模组。 - **温度范围:**支持广泛的温度范围,确保在不同环境下的稳定运行。 #### 标准制定目的 - **消除误解:**标准的制定有助于消除制造商与购买者之间的误解。 - **产品互换性:**通过标准化,促进了不同品牌内存产品之间的互换性。 - **性能改进:**标准的制定有利于推动技术进步,从而提高内存产品的整体性能。 - **便于选择:**为购买者提供了明确的选择指南,帮助他们快速找到适合的应用产品。 #### 标准适用范围 JEDEC标准适用于所有内存制造商和用户,无论是JEDEC成员还是非成员。这些标准不仅在国内得到广泛应用,在国际市场上也具有很高的认可度。 #### 结论 LPDDR4 JESD209-4E标准代表了当前低功耗内存领域的最先进技术。通过不断的技术迭代和完善,LPDDR4不仅在性能上实现了突破,还在功耗控制方面取得了显著成就,极大地推动了移动计算领域的发展。对于设计师和制造商来说,理解和掌握这一标准将有助于他们开发出更加高效、节能的产品。
2024-07-31 15:17:38 6.33MB LPDDR4
1
Thoughtful Data Science: A Programmer's Toolset for Data Analysis and Artificial Intelligence with Python, Jupyter Notebook, and PixieDust Bridge the gap between developer and data scientist by creating a modern open-source, Python-based toolset that works with Jupyter Notebook, and PixieDust. Key Features Think deeply as a developer about your strategy and toolset in data science Discover the best tools that will suit you as a developer in your data analysis Accelerate the road to data insight as a programmer using Jupyter Notebook Deep dive into multiple industry data science use cases Book Description Thoughtful Data Science brings new strategies and a carefully crafted programmer's toolset to work with modern, cutting-edge data analysis. This new approach is designed specifically to give developers more efficiency and power to create cutting-edge data analysis and artificial intelligence insights. Industry expert David Taieb bridges the gap between developers and data scientists by creating a modern open-source, Python-based toolset that works with Jupyter Notebook, and PixieDust. You'll find the right balance of strategic thinking and practical projects throughout this book, with extensive code files and Jupyter projects that you can integrate with your own data analysis. David Taieb introduces four projects designed to connect developers to important industry use cases in data science. The first is an image recognition application with TensorFlow, to meet the growing importance of AI in data analysis. The second analyses social media trends to explore big data issues and natural language processing. The third is a financial portfolio analysis application using time series analysis, pivotal in many data science applications today. The fourth involves applying graph algorithms to solve data problems. Taieb wraps up with a deep look into the future of data science for developers and his views on AI for data science. What you will learn Bridge the gap between developer and data scientist with a Python-based toolset Get the most out of Jupyter Notebooks with new productivity-enhancing tools Explore and visualize data using Jupyter Notebooks and PixieDust Work with and assess the impact of artificial intelligence in data science Work with TensorFlow, graphs, natural language processing, and time series Deep dive into multiple industry data science use cases Look into the future of data analysis and where to develop your skills Who this book is for This book is for established developers who want to bridge the gap between programmers and data scientists. With the introduction of PixieDust from its creator, the book will also be a great desk companion for the already accomplished Data Scientist. Some fluency in data interpretation and visualization is also assumed since this book addresses data professionals such as business and general data analysts. It will be helpful to have some knowledge of Python, using Python libraries, and some proficiency in web development. Table of Contents Chapter 1 Perspectives on Data Science from a Developer Chapter 2 Data Science at Scale with Jupyter Notebooks and PixieDust Chapter 3 PixieApp under the Hood Chapter 4 Deploying PixieApps to the Web with the PixieGateway Server Chapter 5 Best Practices and Advanced PixieDust Concepts Chapter 6 Image Recognition with TensorFlow Chapter 7 Big Data Twitter Sentiment Analysis Chapter 8 Financial Time Series Analysis and Forecasting Chapter 9 US Domestic Flight Data Analysis Using Graphs Chapter 10 Final Thoughts
2024-07-28 12:25:03 22.87MB Data  Science AI  Financial
1
《Python数据科学手册》是Jake VanderPlas撰写的一本针对数据科学和机器学习工具的权威指南,特别适合已经熟悉Python编程的科学家和数据分析师。这本书的2023年版全面更新,旨在帮助读者掌握使用Python进行数据分析的核心工具。 1. **IPython与Jupyter**: IPython是一个交互式计算环境,而Jupyter Notebook是基于Web的界面,让科学家能够以交互方式编写和展示代码、数据和可视化结果。这两个工具结合,为数据科学家提供了强大且灵活的工作平台,支持多语言,便于合作和文档记录。 2. **NumPy**: NumPy是Python的一个核心库,提供了多维数据结构`ndarray`,用于高效存储和处理大型数组数据。NumPy还包含数学函数库,支持向量和矩阵运算,是进行数值计算的基础。 3. **Pandas**: Pandas是构建在NumPy之上的数据处理库,其DataFrame对象提供了一种高效的方式来组织和操作结构化或标签数据。DataFrame允许用户轻松地清洗、转换和合并数据,非常适合进行数据预处理工作。 4. **Matplotlib**: Matplotlib是Python最常用的绘图库,支持创建各种静态、动态和交互式的可视化。它提供了一套类似于MATLAB的API,可以绘制2D和3D图形,并支持自定义颜色、样式、标签等元素,满足复杂的数据可视化需求。 5. **Scikit-Learn**: Scikit-Learn是Python中广泛使用的机器学习库,提供了大量预包装的算法,包括监督学习(如分类、回归和聚类)和无监督学习方法。Scikit-Learn的API设计简洁,使得构建和评估机器学习模型变得简单。 6. **其他相关工具**: 除了上述工具,书中可能还会涵盖其他辅助工具,如用于数据处理的Pandas扩展库(如Dask、Pyspark),用于统计分析的Statsmodels,以及用于深度学习的TensorFlow和Keras等。 通过本书,读者将能够: - 学习如何利用IPython和Jupyter Notebook进行高效的数据探索和分析。 - 掌握NumPy和Pandas进行数据存储、清洗、转换和操纵的技巧。 - 使用Matplotlib创建各种图表,以视觉方式表达数据。 - 了解并应用Scikit-Learn构建机器学习模型,包括训练、验证和优化模型。 - 探索和整合其他相关工具,以扩展Python数据科学工具箱。 Jake VanderPlas,作为本书的作者,拥有丰富的经验,他在Google Research担任软件工程师,专注于开发支持数据密集型研究的工具,包括Scikit-Learn在内的Python库,确保了书中的内容既实用又前沿。这本书是Python数据科学家必备的参考资源,无论你是初学者还是经验丰富的专业人士,都能从中受益。
2024-07-24 11:37:14 19.7MB python
1
python data science handbook-english version python data science handbook-english version
2024-07-24 11:30:15 20.47MB python
1
利用安卓现有漏洞直接像安卓10一样直接使用Android/data目录或者像安卓11一样授权Android/data目录,并且无需shizuku,只是简单写了一个授权和查看文件列表的实例,剩下直接参照别人开源的就可以,都差不多。
2024-07-15 01:41:44 156KB android
1
大数据中的云网络(Cloud Networking for Big Data)-2015年Springer英文原版,0积分
2024-07-12 14:01:50 3.84MB
1
Data Structures & Algorithms Using JavaScript by Hemant Jain English | 17 May 2017 | ASIN: B072J44X62 | 614 Pages | AZW3 | 4.22 MB This book is about the usage of data structures and algorithms in computer programming. Designing an efficient algorithm to solve a computer science problem is a skill of Computer programmer. This is the skill which tech companies like Google, Amazon, Microsoft, Adobe and many others are looking for in an interview. This book assumes that you are a JavaScript language developer. You are not an expert in JavaScript language, but you are well familiar with concepts of references, functions, arrays and recursion. In the start of this book, we will be revising the JavaScript language fundamentals that will be used throughout this book. We will be looking into some of the problems in arrays and recursion too. Then in the coming chapter, we will be looking into complexity analysis. Then will look into the various data structures and their algorithms. We will be looking into a linked list, stack, queue, trees, heap, hash table and graphs. We will be looking into sorting, searching techniques. Then we will be looking into algorithm analysis, we will be looking into brute force algorithms, greedy algorithms, divide and conquer algorithms, dynamic programming, reduction, and backtracking. In the end, we will be looking into the system design that will give a systematic approach for solving the design problems in an Interview.
2024-07-09 23:30:26 4.22MB Data Structures Algorithms JavaScript
1
资源包中有.csv文件和.mat两种格式文件 这组数据代表了在不同操作条件下运行的实验。特别是,研究了刀具的磨损情况(Goebel,1996)。采用三种不同类型的传感器(声发射传感器、振动传感器、电流传感器)进行采样数据。数据被组织在一个1x167的matlab结构数组中。
2024-07-08 21:18:34 14.35MB matlab 数据集
1
标题 "Community-Data:北京、上海、深圳、广州各城市小区数据" 提供了一个关于城市社区数据集的信息,这个数据集包含的是四个中国一线城市——北京、上海、深圳和广州的小区详细信息。这类数据通常对研究城市规划、房地产市场、人口分布、社会经济状况等领域非常有价值。 描述中提到的 "在线访问地址:" 暗示了这个数据集是可以通过互联网获取的,可能是一个公开的数据仓库或者网站,方便研究人员、政策制定者和公众进行数据分析和探索。这样的开放数据源有助于推动透明度和数据驱动的决策。 由于没有具体的标签信息,我们无法得知数据集的具体字段和分类,但根据标题,我们可以推测数据可能包括以下关键信息: 1. **小区名称**:每个小区的唯一标识。 2. **城市**:小区所在的四个城市之一(北京、上海、深圳、广州)。 3. **区县**:小区在所在城市的行政区域。 4. **地理位置**:经纬度坐标,用于地理定位。 5. **建筑面积**:小区总建筑面积,可能包括住宅、商业和其他设施。 6. **户数**:小区内的住宅单元数量。 7. **人口**:居住在小区内的居民人数。 8. **平均房价**或**价格范围**:小区内房屋的平均售价或租金水平。 9. **配套设施**:如学校、医院、公园、购物中心等周边设施的存在和距离。 10. **交通情况**:公共交通线路、地铁站、公交站等信息。 11. **建成年份**:小区的建设年代。 12. **开发商**和**物业管理公司**:负责小区建设和管理的公司。 13. **户型**:小区内不同类型的住宅单元(如一室、两室、三室等)的数量。 这些数据可以被用于多个分析目的,例如: 1. **房地产市场分析**:通过比较不同城市或同一城市不同区域的房价、户数和人口,可以评估房地产市场的健康状况和投资潜力。 2. **城市规划**:了解人口密度和配套设施分布,有助于规划新的住宅区、公共设施和交通网络。 3. **社会研究**:分析小区的人口结构、收入水平,可以揭示城市的社会经济特征。 4. **商业选址**:企业可以根据小区的人口、消费能力和交通便利性来决定开店位置。 5. **政策制定**:政府可以依据这些数据调整住房政策,优化公共服务布局,改善居民生活质量。 由于文件名为 "Community-Data-master",这可能是一个包含主数据文件和其他相关资源(如文档、代码或示例分析)的项目目录。若要深入探究这些数据,需要下载并解压文件,查看数据格式(可能是CSV、JSON或其他结构化格式),并利用数据分析工具(如Python的Pandas库、Excel或SQL)进行处理和分析。
2024-07-02 11:08:52 2.56MB
1
纽约ISO数据 市场财务模型说明 领先市场占所有能源交易的95%。 实时市场由DAM的剩余出价和RTM(通常是较脏的煤和石油)上的“快速斜坡”生成器出价组成。 资料来源 定价索引页 实时市场LBMP生成器 实时市场LBMP区域 日前行情LBMP生成器 日前交易市场LBMP区划 载入资料 NYISO每小时负载-看起来像过去一年中系统每小时的总负载 http://mis.nyiso.com/public/dss/nyiso_loads.csv 实时实际负载数据-每5分钟按区域索引页面 http://mis.nyiso.com/public/P-58Blist.htm
2024-06-24 17:57:26 10KB JavaScript
1