通信原理(第六版)1-7章课后答案,第6章13-24题没有。。。
2025-11-18 21:35:43 14.45MB 通信原理
1
利用ATK-ESP8266 WiFi模块与LabVIEW实现WIFI通信,将实验数据传输到电脑端。在电脑端借助LabVIEW在前面板对实验数据进行处理。
2025-11-17 18:18:35 56KB LabVIEW
1
在嵌入式系统开发领域,STM32系列微控制器以其高性能和丰富的功能受到广泛欢迎。特别是STM32G431系列微控制器,由于其优化的实时性能和灵活的电源管理,成为了工业控制和自动化系统中常用的解决方案。本文将详细探讨如何使用STM32G431微控制器通过模拟SPI通信驱动ADS1118高精度模拟数字转换器(ADC),实现多通道电压数据的采集。 ADS1118是一款精度高、功耗低的16位ADC,它支持多达4个差分输入通道或者8个伪差分输入通道,特别适合用于高性能便携式应用。其灵活的输入多路复用器使得ADS1118可以轻松配置为多个不同的测量类型。在本项目中,我们将其配置为四通道输入,以实现对四个不同电压源的测量。 接下来,我们要讨论的是STM32G431微控制器的模拟SPI接口。SPI,即串行外设接口,是一种常用的高速、全双工、同步的通信总线。它允许微控制器与各种外围设备进行数据交换。在某些STM32G431的变体中,并不直接支持SPI硬件接口,因此我们不得不使用软件模拟的方式来实现SPI通信。这种方法虽然牺牲了一些通信速度,但在一些对成本和空间要求较高的场合仍然是一个可行的解决方案。 在实现模拟SPI驱动之前,需要对STM32G431的GPIO(通用输入输出)端口进行适当的配置。通常,需要设置一个GPIO端口作为SCLK(时钟信号线)、一个GPIO端口作为MOSI(主设备数据输出,从设备数据输入线)、一个GPIO端口作为MISO(主设备数据输入,从设备数据输出线)以及一个GPIO端口作为片选(CS)信号线。通过编写相应的软件代码,利用GPIO端口来模拟SPI的时钟信号和数据信号,实现与ADS1118的数据通信。 在软件实现方面,首先需要初始化STM32G431的GPIO端口,然后编写函数来模拟SPI通信协议的时序。这些函数将负责产生正确的时钟信号和数据信号来控制ADS1118。例如,发送一个字节的函数应该确保数据在时钟信号的上升沿或下降沿被正确采样。 一旦SPI通信准备就绪,就可以开始配置ADS1118了。ADS1118可以通过其I2C或SPI接口进行配置,本项目中我们通过模拟SPI接口来配置。ADS1118的配置涉及到多个寄存器的设置,包括数据速率、输入通道选择、增益设置、模式选择等。通过精心配置这些寄存器,可以确保ADS1118以预定的方式工作,从而准确读取输入通道上的电压值。 在配置完成后,我们可以开始读取ADS1118中的电压数据。通常,数据读取会涉及到启动转换命令和读取转换结果的命令。软件需要处理好时序和数据的完整性,确保从ADS1118中读取到正确的数据。一旦数据被读取,就需要将其从原始的16位值转换为实际的电压值。这通常涉及到一些数学运算和对ADS1118参考电压的理解。 当实现整个系统时,还需要考虑错误处理和异常情况,比如通信错误、过压或欠压情况等。为了保证系统的稳定性和可靠性,这些异常情况都需要被软件妥善处理。 通过STM32G431微控制器的模拟SPI接口驱动ADS1118实现四通道电压采集,虽然在实现过程中面临一定的挑战,比如需要精确控制GPIO时序等,但一旦成功,就能在硬件成本和空间受限的条件下实现精确的多通道数据采集,为各种工业和消费电子应用提供了很好的解决方案。
2025-11-15 16:03:20 25.76MB STM32 ADC采集 SPI通信
1
在2023年北京邮电大学的通信原理实验报告中,重点关注了双边带抑制载波调幅(DSB-SC AM)的相关知识和实验操作。DSB-SC AM作为一种常见的通信调制方式,其核心在于通过调制过程移除了载波分量,保留了两个边带,从而节约了传输功率,并且理论上能够实现更高的频谱利用率。实验报告中详细阐述了DSB-SC AM信号的产生、波形特点、频谱特点,以及相干解调的原理和实施措施。 实验报告首先介绍了DSB-SC AM信号的时域和频域表现形式。时域中的DSB信号表达式为s(t)=m(t)coswt,频域表达式为1/2[M(w-wc)+M(w+wc)]。在此基础上,实验报告进一步说明了DSB-SC AM信号的产生原理和相干解调原理,即通过模拟基带信号与正弦载波相乘得到DSB-SC AM信号,并指出DSB-SC AM信号的解调必须采用相干解调方式。 在试验环节中,通过模拟音频信号和载频信号,使用乘法器产生DSB-SC AM信号,并通过示波器观察信号波形及其频谱特点。另外,为了能够在接收端恢复载波,实验中采取在发送端加导频的方法,并在接收端使用锁相环来提取载波。锁相环能够通过锁相机制跟踪导频信号,实现载波的提取。实验报告详细描述了锁相环的工作原理和调试步骤,以及如何利用低通滤波器(LPF)和90度移相器进行相干解调,最终获取模拟基带信号。 为了深入理解DSB-SC AM信号的特点,实验报告对VCO(压控振荡器)的压控灵敏度进行测量。VCO是锁相环中实现信号频率变化的关键元件,压控灵敏度的测量可以确定其频率调整的灵敏程度,这对于锁相环的调试至关重要。 整个实验过程中,详细记录了实验步骤和结果,包括DSB-SC AM信号的产生、加导频信号、锁相环的调试和载波的提取,以及最终相干解调的实现。实验报告强调了理论与实践相结合的重要性,通过实验操作加深了对DSB-SC AM调制解调原理的理解。 此外,报告中还提及了DSB-SC AM信号相干解调过程中的一些关键点,比如相位翻转与调制信号波形的关系,以及如何通过低通滤波器滤除四倍载频分量,通过隔直流电路滤除直流分量,最终获取纯净的模拟基带信号。 通过以上知识点,可以看出实验报告围绕DSB-SC AM这一通信原理的实验展开,涉及到信号的产生、调制、解调和信号恢复等多个环节。实验不仅增强了学生对通信原理的理解,而且提升了实际操作能力和问题解决能力。
2025-11-15 14:57:08 6.49MB
1
用命名管道实现进程间通信,界面用的wpf。 客户端输入 例:1+1,点击send(点Send前请打开服务端) 服务端接收到并运算后将结果返回给客户端 vs2015 + .NET Framework4.5.2,Windows应用程序
2025-11-14 11:37:31 4.61MB 命名管道 进程间通信 管道通信
1
串口通信作为计算机与各种数据终端之间进行连接的重要方式,广泛应用于嵌入式系统、通信设备、工业控制等领域。本文将围绕一个名为“串口通信助手-CSerialPort-0”的软件包进行介绍,该软件包主要是为开发者提供一个基于C++的串口通信库,通过它可以在应用程序中实现对串口的配置、读取和发送数据等功能。 软件包中的include文件夹包含了库函数的头文件,开发者在编写应用程序时需要引用这些头文件以调用库中的函数。头文件通常包含了库提供的类、函数、宏等的声明,是C++编程中的重要组成部分。 CMakeLists.txt文件则是一个用于CMake构建系统的脚本文件,CMake是一个跨平台的自动化构建系统,它使用一个名为CMakeLists.txt的文件来配置项目的构建过程。在这个文件中,定义了项目构建所需的库文件、源代码文件以及构建项目所需的其他配置信息。 lib文件夹包含编译后的库文件,这些库文件是二进制格式的,可以直接被链接到其他应用程序中使用。在Windows系统中,这些文件可能包括.dll文件,在Unix-like系统中,通常是.so文件。通过这些编译好的库文件,开发者可以轻松地在自己的项目中实现串口通信功能。 pic文件夹可能包含用于程序开发的一些图片或图表资源,这些资源通常用于文档说明或者程序的界面设计中。 .travis.yml文件是基于Travis CI的配置文件,Travis CI是一个持续集成服务,它可以帮助开发者自动运行测试,确保代码在提交到版本控制系统之前保持在可工作的状态。开发者可以通过配置.travis.yml文件来自动化测试过程。 cserialport-config.cmake.in文件是CMake配置文件的模板,它可以在构建过程中被CMake工具使用,以便生成适应当前构建环境的cserialport-config.cmake文件。该文件用于提供关于如何找到CSerialPort库的信息,以及如何正确链接到库的指令。 .github文件夹通常包含了与GitHub平台相关的配置文件,如工作流配置、贡献指南等。这些文件有助于开发者管理他们的开源项目,包括代码托管、问题跟踪和版本控制等。 .gitattributes文件用于配置Git的仓库属性,它定义了在不同操作系统中的换行符处理方式,以及控制文件的其他行为。 .clang-format文件是一个用于源代码格式化的配置文件,Clang-Format是LLVM项目的一部分,它可以根据用户的配置来自动格式化C++代码,以保证代码风格的一致性。 doc文件夹包含项目文档,这些文档可能是源代码的注释、用户手册、API文档等,它们是开发者了解如何使用该库的重要参考资料。 这个名为“串口通信助手-CSerialPort-0”的软件包是一个功能强大的串口通信库,它为开发者提供了一整套串口通信的解决方案,包括通信协议的实现、数据的读写操作、以及与操作系统底层通信的接口。开发者可以利用这个库快速构建起自己的串口通信程序,大大降低开发难度和开发周期。
2025-11-13 13:37:56 86.23MB 串口通信
1
在现代化战争中,无线通信技术的应用已经变得不可或缺,它不仅广泛应用于国民经济领域和日常生活,同时也成为现代战争指挥、情报和控制等关键领域的重要支撑。为了保障通信系统的可靠性和稳定性,尤其在面对复杂多变的干扰环境下,抗干扰通信和通信干扰技术成为了研究的热点。 在通信技术的发展过程中,为了提高频谱利用率和信号传输效率,多载波传输技术得到了广泛应用。该技术通过将高速数据流分解为多个低速数据流,分配至相互正交的子载波上进行传输。这种方法能够有效节省带宽,具体方式包括频分复用(FDM)、3dB频分复用和正交频分复用(OFDM)等。OFDM通过离散傅立叶反变换(IDFT)或快速傅立叶变换(FFT)实现信号的调制和解调,极大提高了频谱效率和传输速率。 GMSK(高斯最小频移键控)作为一种高效的调制技术,广泛应用于数字移动通信中。其调制波形的产生和解调过程通过正交调制器实现,其中差分解调器原理是研究的重点之一。 在军事通信领域,电磁环境异常复杂,敌我双方在电磁频谱上进行着激烈的对抗。为了保护信息传输的可靠性和安全性,对抗敌方的通信干扰,通信抗干扰技术应运而生。通信干扰技术主要分为通信侦察和通信干扰,前者通过探测、搜索和分析敌方通信信号获取情报,后者则通过发射干扰信号破坏或扰乱敌方通信。在防御方面,通信抗干扰技术包括通信反侦察和反干扰措施,如直接序列扩频通信技术和调频通信技术等。 电子战作为战争的一个新维度,要求通信抗干扰技术能够适应更加复杂的战场环境。例如,通信对抗的分类还包括对敌方通信的侦察、干扰、反侦察和反干扰等,涉及电子对抗、网络对抗和消息对抗等多个层面。 同时,军事通信在实际运用中面临的干扰环境十分复杂,干扰种类繁多,包括敌意干扰、非敌意干扰,以及环境噪声干扰等。敌意干扰又分为阻塞干扰、压制干扰、跟踪干扰和瞄准干扰等多种形式。为了有效对抗这些干扰,通信抗干扰方法除了频率处理和空间处理外,还包括时域处理和极化处理等。 抗干扰通信和通信干扰技术的研究和应用是一个跨学科、多层次、多维度的综合技术问题,它关乎现代战争的制信息权和信息战的胜负。随着电子信息技术的不断发展,这一领域必将迎来更多新技术、新方法的出现,为保障通信安全提供更为强大的技术支持。
2025-11-13 10:39:47 510KB
1
101通信协议,全称为“101规约”或“IEC 60870-5-101”,是国际电工委员会(IEC)制定的一种用于电力系统自动化设备之间通信的标准协议。该协议主要应用于远程终端单元(RTU)、智能电表、保护设备和其他电力监控设备之间的数据交换。101协议基于ASDU(应用服务数据单元)和TCU(传输控制单元)的概念,提供了一种可靠且高效的数据传输机制。 101协议的核心在于其报文结构,它由启动字符、控制域、地址域、信息域和校验域组成。控制域定义了报文的类型和功能,如读取、写入或确认等操作;地址域包含了发送方和接收方的地址信息;信息域则携带实际的数据;校验域通常采用奇偶校验或CRC校验,以确保数据传输的准确性。 101通信调试软件是进行协议测试和故障排查的重要工具。它允许用户模拟发送和接收101协议报文,以验证设备间的通信是否正常。这款名为“ProAnalyst绿色抢先版Ver0.1”的软件可能具备以下特性: 1. **模拟器功能**:软件可以模拟RTU或其他设备,生成符合101协议的报文,用于测试通信链路的正确性。 2. **数据分析**:它可以捕获并解析接收到的报文,帮助用户理解通信过程中的数据流动。 3. **故障检测**:通过对比预期报文与实际接收的报文,软件能快速定位通信问题。 4. **协议兼容性**:支持1997版和2002版的101协议,确保对不同年代设备的兼容性。 5. **可视化界面**:可能包含图形化的报文编辑器和监视器,使用户更直观地查看和操作通信过程。 6. **日志记录**:保存通信历史,便于后期分析和调试。 7. **自动测试脚本**:允许用户创建和运行预设的测试序列,提高测试效率。 在实际应用中,101通信调试软件可用于以下场景: 1. **新设备集成**:在新设备接入网络前,通过软件进行通信测试,确保设备能正常交互。 2. **故障排查**:当系统出现通信问题时,软件可以帮助定位错误源,是网络还是设备本身。 3. **性能优化**:分析通信数据,优化传输速率和报文结构,提升整体系统的通信效率。 对于“ProAnalyst绿色抢先版Ver0.1”,“绿色”可能意味着该软件是轻量级的,不需要安装即可使用,而“抢先版”可能表示它是早期版本,可能存在一些功能限制或者未完善的方面。用户在使用时应密切关注软件的更新和文档,以便获取最新的功能和修复的bug。同时,掌握101通信协议的基本原理和结构,将有助于更好地利用这类调试软件进行工作。
2025-11-12 16:08:23 10.32MB 101通信
1
在无线通信技术高速发展的背景下,移动通信和无线通信天线技术不断取得突破,其中微带天线因其小型化、易集成和低成本等优点,在无线通信领域中占据越来越重要的位置。本开题报告主要围绕小型化宽带微带天线的研究,以及其在无线通信天线设计中的应用展开。 微带天线的基本原理、设计方法及其在宽带、高效率、低剖面实现等方面的研究是本次研究的主要内容。微带天线的工作原理涉及电磁场理论和天线理论,其特性包括工作频率、带宽、增益、辐射效率等,这些因素共同决定了微带天线的性能。在研究过程中,需关注天线的频段、宽带性能、耦合影响、辐射模式等参数,并通过仿真和实验手段测算天线的各项性能参数。 为了深入理解微带天线的设计原理与性能,研究者将设计并制作微带天线原型,通过电磁仿真软件进行仿真分析,并通过实验验证理论模型。实验设计包括天线的制作过程、测试设备的选择以及实验环境的搭建等步骤。实验数据的分析是检验设计是否成功的关键,研究者将根据仿真及实验数据对天线的性能参数进行详细分析,整理和归纳总结,以获得微带天线设计的优化结论。 本次研究的预期成果是通过理论研究和实验设计,深入探究小型化宽带微带天线的设计及其应用。这一成果将为微带天线在无线通信系统中的应用提供理论支持,有助于提高无线通信系统的性能和数据传输速度,进而促进无线通信技术的发展。 目前,研究已取得一定进展,完成了文献调研、理论探讨、电磁仿真建模等工作,并初步设计出微带天线样品。未来的研究计划包括:完善微带天线的设计,并制作实验样品;使用电磁仿真软件对样品进行性能参数仿真与分析;执行实验测试,并记录实验数据;基于实验数据对微带天线的性能参数进行分析、整理和归纳总结,以形成微带天线设计的优化结论和研究成果。 本次研究的意义在于其对无线通信系统的性能提升具有重要影响,研究的成果将有助于未来无线通信技术的发展,提高数据传输速率,优化通信质量。同时,对微带天线的小型化和宽带性能的研究,对于推动通信设备的集成化、智能化以及成本控制等方面具有积极意义。
2025-11-11 20:38:58 11KB
1
利用COMSOL Multiphysics进行光纤布拉格光栅(FBG)仿真的方法和技术要点。首先解释了FBG的基本原理,即通过在光纤内部制造周期性折射率变化来实现特定波长光的反射。接着阐述了如何在COMSOL中构建FBG模型,包括定义折射率调制函数、选择合适的边界条件以及正确配置求解器设置。文中还提供了具体的MATLAB代码示例用于定义折射率调制函数,并强调了在设置过程中需要注意的问题,如避免将函数表达式误认为字符串、选择适当的边界条件以确保仿真准确性等。此外,作者分享了一些实用的经验技巧,比如通过调整调制深度观察反射带宽的变化,以此评估FBG的温度/应变传感性能。最后指出,虽然仿真不能完全替代实验,但它能够帮助研究人员更好地理解和优化FBG的设计。 适用人群:从事光通信领域研究的技术人员、高校相关专业师生及其他对FBG仿真感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解FBG工作机理并掌握其仿真技能的研究人员;目标是在理论基础上提高实际操作能力,为后续实验提供指导。 其他说明:文中不仅涵盖了基本概念介绍,还包括大量实操建议,对于初学者来说非常友好。同时提醒读者关注数值误差带来的影响,确保仿真结果的有效性和可靠性。
2025-11-11 14:36:42 337KB Bragg Grating
1