本文档是Spartan-6的设计元素用户手册,包括各种原语,IP核以及硬件宏等底层资源的详细讲解。
2024-08-16 12:32:25 2.85MB Spartan6 用户手册
1
FT601是一款高速USB3.0接口的FPGA(Field-Programmable Gate Array)开发板,常用于数据传输和高性能数字系统的设计。在这个测试工程中,我们主要关注的是如何利用Verilog语言在Vivado环境下进行FPGA的编程与验证,以及FT601的相关硬件接口和驱动程序的安装。 1. **FT601 FPGA概述**: - FT601是FPGA芯片制造商Lattice Semiconductor推出的一款USB3.0控制器,提供高达5Gbps的数据传输速率。 - 它集成了USB3.0接口,可方便地连接到PC或其他支持USB3.0的设备,适用于高速数据采集、图像处理和嵌入式系统应用。 2. **Verilog编程**: - Verilog是一种硬件描述语言(HDL),用于FPGA设计,能够描述数字系统的结构和行为。 - 在FT601测试工程中,开发者会用Verilog编写逻辑模块,实现特定功能,如USB3.0协议的处理,数据的接收和发送等。 3. **Vivado工具**: - Vivado是Xilinx公司的综合设计环境,包括IP集成、硬件管理、仿真、综合、布局布线等全套功能。 - 使用Vivado,开发者可以创建、编译、仿真和调试FT601的Verilog代码,生成配置比特流文件,最终下载到FPGA中运行。 4. **FT601测试过程**: - 开发者首先需要理解FT601的数据手册(datasheet),了解其引脚定义、工作原理和功能特性。 - 创建Verilog设计,实现USB3.0协议的逻辑,例如设置端点、处理控制传输等。 - 在Vivado中进行逻辑综合和实现,生成比特流文件。 - 下载比特流到FT601 FPGA,进行硬件验证,可能需要编写硬件测试平台(HWTB)进行功能测试。 - 配合"04_FT60X系列测试图片",检查硬件连接和功能正确性。 5. **驱动程序安装**: - "02_FT60X_Driver"很可能包含FT601的驱动程序,用户需要在PC上安装这些驱动才能识别并通信。 - 驱动程序通常包括Windows设备驱动(INF文件)和相关的软件库,以便通过USB接口与FT601进行数据交互。 6. **开发教程**: - "米联客(MSXBO)USB3.0 FT60X方案开发教程(完整版).pdf"提供了详细的步骤指导,从硬件连接到软件开发,对初学者尤其有用。 - 该教程可能涵盖了FT601的原理介绍、Verilog设计实例、Vivado使用方法、驱动安装及应用示例等内容。 这个FT601的FPGA测试工程涵盖了FPGA开发的多个关键环节,包括硬件接口的理解、Verilog编程、Vivado工具使用、驱动程序的安装与调试,是学习USB3.0 FPGA设计的一个实践项目。通过这个工程,开发者可以深入理解高速接口设计,并提升在实际项目中的应用能力。
2024-08-15 17:09:19 963.75MB fpga开发 verilog
1
双口RAM(Dual Port RAM)是一种在数字设计中常见的存储器结构,它可以同时从两个独立的端口读取和写入数据,适用于实现并行处理和高速数据交换。在这个项目中,我们将关注如何使用Verilog语言来实现双口RAM的乒乓操作,并在Xilinx的Vivado 2017.4工具中进行综合和仿真。 乒乓操作是双口RAM的一种高效利用方式,它通过在两个独立的存储区域之间交替进行读写操作,实现了数据的无缝传递。这种机制常用于实时系统和流水线设计中,以确保在处理新数据的同时,旧数据的处理不受影响。 我们需要理解双口RAM的基本结构。双口RAM通常包括两个独立的读写端口,每个端口都有自己的地址、数据和控制信号,如读写使能。在乒乓操作中,一个端口负责写入数据,而另一个端口则负责读出数据,这两个操作可以并行进行,从而提高了数据处理的速度。 在Verilog实现中,顶层模块(top_level_module)是整个设计的核心,它将包含所有的子模块实例化以及必要的接口信号。这个顶层模块会包含两个控制模块(control_module),分别管理两个端口的读写操作。控制模块根据特定的时序逻辑,切换写入和读取端口,实现乒乓操作。 RAM存储模块(ram_storage_module)是双口RAM的具体实现,它通常由多个存储单元(如DFF)组成,每个存储单元对应一个地址,存储数据。在乒乓操作中,这个模块会包含两个独立的RAM块,一个用于写入,另一个用于读出。 输入数据二选一模块(input_mux_module)用于在两个不同的数据源之间选择,当乒乓操作切换时,这个模块会根据控制信号决定从哪个端口接收数据。输出数据二选一模块(output_mux_module)则根据控制信号从两个RAM块中选择数据输出,确保在写入新数据的同时,旧数据能够被正确读出。 在Vivado 2017.4中,你可以使用IP Integrator工具创建一个自定义的IP核,将这些Verilog模块集成在一起。然后,通过Vivado的Simulation工具对设计进行功能仿真,验证乒乓操作是否按照预期工作。此外,还需要进行时序分析和综合,以确保设计满足目标FPGA的时序约束,并最终生成比特流文件(bitstream),下载到FPGA硬件中运行。 双口RAM的乒乓操作是实现高性能、低延迟数据处理的关键技术之一。通过理解和实现这样的设计,我们可以更好地掌握Verilog语言和FPGA设计流程,为更复杂的数据处理和通信系统打下基础。在实际应用中,这种技术常被用于图像处理、信号处理和网络数据包处理等领域。
2024-08-15 16:18:42 14.84MB verilog VHDL 乒乓操作 FPGA
1
verilog实现B码(直流码)解码,输出年、日、时、分、秒、毫秒,输出时间格式为BCD码,输出同步秒脉冲,同时根据秒脉冲生成毫秒。已在实际工程中应用。可直接拿来使用!
2024-08-09 11:21:50 19KB 编程语言 verilog fpga
1
AD AD7276 verilog 驱动 程序 Spartan 6, K7亲测通过
2024-08-08 17:02:25 4KB AD7276 verilog 模数转换
1
Verilog超详细教程 本教程是北大于敦山老师的作品,内容非常详细,并且写得非常好。读者可以通过这份教程来学习Verilog HDL的基本概念和应用。 Verilog HDL是一种高级编程语言,能够对硬件逻辑电路的功能进行描述。它具有特殊结构,可以描述电路的连接、功能、时序和并行性。Verilog HDL可以在不同抽象级上描述电路,例如行为级、门级和寄存器传输级等。 使用HDL描述设计具有许多优点,例如设计在高层次进行,与具体实现无关,设计开发更加容易,早在设计期间就能发现问题,能够自动的将高级描述映射到具体工艺实现等。HDL具有更大的灵活性,能够重用、选择工具及生产厂,并能够利用先进的软件。 Verilog HDL的历史可以追溯到1983年,由GDA公司的Phil Moorby所创。Phil Moorby后来成为Verilog-XL的主要设计者和Cadence公司的第一个合伙人。在1984~1985年间,Moorby设计出了第一个Verilog仿真器。 本教程的课程内容包括数字集成电路设计入门、Verilog HDL的介绍、结构级描述及仿真、行为级描述及仿真、延时的特点及说明、介绍Verilog testbench、激励和控制、结果的产生及验证、任务task及函数function、用户定义的基本单元(primitive)、可综合的Verilog描述风格等。 在课程的第二部分,讲解了逻辑综合的介绍、设计对象、静态时序分析、design analyzer环境、可综合的HDL编码风格等内容。 在课程的第三部分,讲解了设计约束、设计优化、设计编译、FSM的优化、产生并分析报告等内容。 在课程的第四部分,讲解了自动布局布线工具(Silicon Ensemble)简介、课程安排等内容。 通过这份教程,读者可以系统地学习Verilog HDL的基础知识和应用技术,从而掌握数字集成电路设计的基本技能。 Verilog HDL的应用非常广泛,例如ASIC设计、FPGA设计、数字集成电路设计等领域都需要使用Verilog HDL。因此,学习Verilog HDL是非常有必要的。 本教程的目的是为了帮助读者快速掌握Verilog HDL的基础知识和应用技术,从而提高读者的设计能力和职业技能。
2024-07-18 21:06:08 2.53MB verilog fpga 详细教程
1
标题中的“fpga.rar_FPGA通信_STM32 FPGA_fpga_fpga实现fsmc_verilog FPGA”揭示了本主题的核心内容,即FPGA(Field Programmable Gate Array)与STM32微控制器之间的通信,使用Verilog语言实现,并且特别提到了FSMC(Flexible Static Memory Controller)接口。STM32是一款基于ARM Cortex-M内核的微控制器,广泛应用于嵌入式系统设计,而FPGA则是一种可编程逻辑器件,能够灵活地配置为各种数字逻辑功能。 在描述中,“verilg语言实现测频及与stm32以fsmc通信方式进行通信”表明我们将探讨如何用Verilog编写代码来测量频率,并且这个过程将涉及到STM32与FPGA之间的FSMC通信协议。Verilog是一种硬件描述语言,用于设计和验证数字系统的逻辑行为。FSMC是STM32的一种外设,可以用来控制不同的外部存储器和接口,如SRAM、NAND Flash等,但在这里它被用于与FPGA的交互。 以下是对这些知识点的详细说明: 1. **FPGA通信**:FPGA通过引脚与外部设备进行通信,可以是并行或串行方式,如SPI、I2C、UART、PCIe等。STM32作为主机,通过特定的总线协议发送命令和数据到FPGA,FPGA接收并处理后返回响应。这种通信可以实现数据交换、控制信号传输等功能。 2. **STM32**:STM32系列是意法半导体公司推出的一系列基于ARM Cortex-M内核的微控制器,具有高性能、低功耗的特点。它们广泛应用于物联网、工业控制、消费电子等领域,具有丰富的外设接口和强大的处理能力。 3. **Verilog**:Verilog是硬件描述语言之一,用于数字电路的设计和仿真。在本案例中,Verilog代码可能包含了一个计数器模块,用于频率测量,以及一个FSMC接口模块,用于与STM32的FSMC端口进行通信。 4. **FSMC(Flexible Static Memory Controller)**:FSMC是STM32的一种高级总线接口,它可以连接到多种类型的静态存储器,包括SRAM、PSRAM和NOR/NAND Flash。在与FPGA通信时,STM32通过FSMC配置时序参数,发送读写命令,以及控制数据流。 5. **FPGA实现FSMC**:在FPGA上,我们需要创建一个FSMC兼容的接口,这通常涉及复用的地址/数据线、控制信号(如读/写使能、片选等)以及同步时钟的处理。Verilog代码将定义这些信号的逻辑行为,使得FPGA能够正确响应STM32的FSMC请求。 6. **频率测量**:频率测量通常通过计数器实现,计数器在特定时钟周期内对输入信号的脉冲进行计数,然后根据已知时钟周期计算出频率。在FPGA中,我们可以用Verilog编写一个计数器模块,该模块可以与STM32通信,接收开始/停止信号,并在测量完成后将结果返回给STM32。 7. **设计流程**:设计流程通常包括原理图设计、Verilog编码、仿真验证、综合、适配和配置。在完成Verilog设计后,需要通过工具进行综合和布局布线,生成配置文件,最后烧录到FPGA中。 以上就是关于FPGA与STM32通过FSMC通信以及Verilog实现频率测量的相关知识点,这些技术在嵌入式系统、工业控制和数字信号处理等领域有着广泛的应用。理解并掌握这些知识,对于设计高效、灵活的嵌入式系统至关重要。
2024-07-17 15:05:43 4.49MB fpga通信 fpga
1
在数字系统设计中,FIFO(First In First Out)是一种常用的数据存储结构,它遵循先进先出的原则。在异步通信中,FIFO扮演着重要的角色,用于解决两个不同速度或者时钟域之间的数据传输问题。Verilog是一种硬件描述语言,广泛应用于FPGA(Field Programmable Gate Array)设计。Vivado是Xilinx公司推出的集成开发环境,专门用于FPGA的设计、仿真、综合和编程。 标题中的“FIFO实现异步通信verilog源码vivado”意味着我们将探讨如何使用Verilog语言在Vivado环境下编写FIFO模块,以实现两个异步系统间的通信。以下将详细介绍相关知识点: 1. **FIFO的基本结构**:FIFO通常由一个数据存储器(RAM或ROM)和两个读写指针(Read Pointer和Write Pointer)组成。数据存储器用于存放数据,而指针则跟踪数据的存取位置。 2. **异步通信**:在异步通信中,数据发送端和接收端的时钟可能不同步,因此需要FIFO作为缓冲区来存储数据,确保数据正确传输。FIFO通过独立的读写时钟控制,可以处理这种速度差异。 3. **Verilog语言**:Verilog是一种用于硬件描述的语言,可以用来定义数字系统的结构和行为。在FPGA设计中,Verilog代码可以被综合成逻辑门电路,实现硬件功能。 4. **Vivado工具**:Vivado提供了设计输入、仿真、综合、布局布线和器件编程等一整套流程。在Vivado中,我们可以创建Verilog模块,编写FIFO的源码,然后进行仿真验证,最后在目标FPGA上实现。 5. **FIFO的接口**:FIFO的接口通常包括数据线(Data)、读使能(Read Enable)、写使能(Write Enable)、空标志(Empty)、满标志(Full)和读写地址(Read/Write Address)等信号。这些信号用于控制FIFO的操作和状态检测。 6. **FIFO的设计**:设计一个FIFO通常包括以下几个步骤: - 定义FIFO深度(即存储单元的数量)。 - 设计读写指针的计数逻辑,通常使用模运算(Modulo)来实现循环地址计算。 - 编写读写操作的控制逻辑,处理读写冲突和边界条件。 - 实现数据存储器,可以是分布式RAM或块RAM,取决于FPGA资源。 7. **异步接口处理**:在异步通信中,由于时钟域的不同,需要使用边沿检测器(如DFF with async reset)和同步器(如两阶段锁存器)来确保数据在跨时钟域传输时的正确性。 8. **测试平台与仿真**:为了验证FIFO的功能,需要创建一个测试平台,模拟读写请求,检查FIFO的各种状态和数据传输的正确性。Vivado内置的ModelSim或ISim工具可以进行仿真验证。 9. **综合与实现**:在经过功能验证后,Verilog代码需要进行综合,生成适合目标FPGA的逻辑网表。然后在Vivado的实现步骤中,进行布局布线,优化资源利用,最终生成比特流文件,用于加载到FPGA中。 10. **时序分析**:综合和实现后,Vivado会提供时序分析报告,帮助开发者了解设计的性能,包括时钟周期、建立时间、保持时间和功耗等关键指标。 通过以上知识点,我们可以理解如何使用Verilog在Vivado环境中实现一个FIFO模块,解决异步通信中的数据缓冲问题。实际设计时,还需要考虑FPGA资源的优化和系统的具体需求。
2024-07-10 17:42:24 44.64MB FPGA verilog FIFO
1
华为verilog典型电路设计,看看人家的标准
2024-07-05 09:59:16 391KB verilog
1
(详细项目内容请看对应博客正文,本资源为对应项目工程,含仿真文件) 一、项目要求 1.输入报文长度64~2048字节; 2.输入报文之间最小间隔为两拍; 3.输出报文的前两拍添加16bit报文长度信息;第1拍为报文长度高8位;第2拍为报文长度低8位;第3拍开始为输入报文; 二、项目方案 1. 要求输出报文,且报文输出在报文长度输出之后,所以需要先对输入报文进行缓存,根据输入报文的位宽和长度范围,此处选择合适的同步FIFO即可;(如果是IC,那么就需要自己写FIFO,可以参考本博客的FIFO介绍) 这里项目提出了第1个要求,掌握FIFO的使用。 2. 要求输出报文长度,所以需要对输入报文长度进行计数,并将其缓存; 此处有坑,若只用寄存器对长度进行缓存,存在被后续报文长度覆盖的风险,故需要第2个FIFO对报文长度进行缓存。 3. 要求先输出报文长度然后紧跟着输出报文,此处需要对时序进行设计,需要掌握FIFO的读写时序,需要理解fpga的时钟沿采样。 理解:时钟沿采样及数据下一时钟沿变化。
2024-07-04 15:30:25 31.18MB fpga开发 FPGA项目 Verilog