TSP(旅行商) 问题代表组合优化问题, 具有很强的工程背景和实际应用价值, 但至今尚未找到非常有效的求解方法.为此,讨论了最近研究比较热门的使用各种智能优化算法(蚁群算法、遗传算法、 模拟退火算法、 禁忌搜索算法、Hopfield神经网络、 粒子群优化算法、 免疫算法等) 求解TSP 问题的研究进展,指出了各种方法的优缺点和改进策略.最后总结并提出了智能优化算法求解TSP 问题的未来研究方向和建议.

2024-06-20 21:21:09 408KB
1
随着港口吞吐量逐年攀升,船舶到达密度不断增加,泊位和岸桥(装卸起重机)资源分配问题的全局优化已成为一个重要的课题。泊位和岸桥分配为NP-Hard问题,确定性算法在寻找最优解时需要大量的计算时间,并且只能解决一些特殊问题,因此许多研究中提出了基于启发式规则的近似求解方法,如基于模拟退火(SA)或遗传算法(GA)的方法。本文中,我们采用了模拟退火算法来优化此问题中的分配。 此算法适用于对计算复杂性、NP问题、数学模型、集装箱码头泊位和岸桥分配等方向有研究的学者,除了算法文档外,我们还提供了C++编写的源代码,此源代码只依赖于C++的标准库,方便学习和优化。 注意:文档和源码都具有原创性,供学者研究使用,不可用于商业用途。
2024-06-14 19:24:25 54.11MB 模拟退火算法 NP难问题
1
蚁群算法(ant colony algorithm,ACA)是由意大利学者M.Dorigo等人于20世纪90年代初提出的一种新的模拟进化算法,其真实地模拟了自然界蚂蚁群体的觅食行为。M.Dorigo等人将其用于解决旅行商问题(traveling salesman problem,TSP),并取得了较好的实验结果。 近年来,许多专家学者致力于蚁群算法的研究,并将其应用于交通、通信、化工、电力等领域,成功解决了许多组合优化问题,如调度问题(job-shop scheduling problem)、指派问题(quadratic assignment problem)、旅行商问题(traveling salesman problem)等。
2024-06-11 02:57:18 2KB matlab 蚁群算法 TSP问题
1
【TSP问题】基于遗传算法求解三维旅行商问题含Matlab源码
2024-05-30 11:59:52 519KB matlab 开发语言
1
NGTP(NextGeneration Telematics Pattern)是一种把无线通讯的服务发布到车载设备和手持设备的新方式,重点关注于贯穿于整个服务分发链中的开发的接口。 很值的参考!
2024-04-25 13:07:49 2.86MB NGTP TSP
1
模拟退火算法作为一种启发式搜索算法,在求解组合优化问题方面具有广泛的应用前景。通过深入理解算法的原理和实现步骤,并结合具体问题的特点进行改进和优化,我们可以更好地发挥模拟退火算法的优势,为实际问题提供有效的解决方案。
2024-04-24 10:19:36 113KB 模拟退火算法
1
旅行商问题,即TSP问题(Travelling Salesman Problem)是数学领域中著名问题之一。本文档内含有多个TSP的实现算法及相应代码,主要有模拟退火算法和遗传算法。实现语言有c ,c++和matlab
2024-04-17 18:13:17 141KB
1
模拟退火算法(Simulated Annealing, SA)是一种概率型优化算法,用于在给定大的搜索空间内寻找问题的最优解。该算法模仿了物理退火过程,即固体物质加热后再缓慢冷却以减少系统的能量,达到更稳定的状态。在模拟退火中,"能量"对应于优化问题的目标函数值,"温度"则是一个控制参数,用于决定接受较差解的概率,以避免陷入局部最优。 以下是一个使用Python实现的模拟退火算法示例: 在这个例子中,cost_function 是我们要优化的目标函数,neighbour_function 用于生成当前解的邻近解,simulated_annealing 函数实现了模拟退火算法的主体逻辑。我们从一个随机初始化解开始,通过不断迭代、生成新解、评估和接受或拒绝新解来寻找最优解。 请注意,模拟退火算法的性能高度依赖于初始温度、降温速率、最大迭代次数等参数的设置,以及邻居函数和目标函数的设计。在实际应用中,可能需要根据具体问题调整这些参数和函数。
2024-04-16 01:06:18 2KB 模拟退火算法 python
1
应用于函数寻优问题
2024-04-14 21:29:38 1KB matlab 模拟退火算法
1
多配送中心选址问题可以描述为:某个地区内有若干个需求点,已知各个需求点的需求量,现欲在该区域内若干个配送中心备选点中选择一部分,建立配送中心,以满足该地区需求点的需求,并使得包括固定费用、运输费用以及存储费用在内的总费用最少。 为了简化问题,我们先做出如下假设: 1)仅在给定的配送中心备选点中选择一部分建立配送中心。 2)运输费用与运量成正比。 3)配送中心容量足够大,可以满足所有需求。 4)各需求点的需求量已知。 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其冷却。加温时,固体内部粒子随温升变为无序状,内能增大;而冷却时粒子渐趋有序,在每个温度上都达到平衡态,最后在常温时达到基态,内能减为最小。
2024-04-11 10:43:43 30KB matlab 模拟退火算法 中心选址问题
1