局部二进制模式(LBP)是一种有效的纹理描述符,在纹理分类和面部识别中具有成功的应用。 常规LBP描述符有许多扩展。 扩展之一是主要局部二进制图案,其目的是提取纹理图像中的主要局部结构。 第二个扩展表示Gabor变换域(LGBP)中的LBP描述符。 第三个扩展是多分辨率LBP(MLBP)。 另一个扩展是用于视频纹理提取的动态LBP。 在本文中,我们将传统的本地二进制模式扩展到金字塔变换域(PLBP)。 通过级联分层空间金字塔的LBP信息,PLBP描述符考虑了纹理分辨率的变化。 PLBP描述符显示了其在纹理表示方面的有效性。 对LBP,MLBP,LGBP和PLBP进行了全面比较。 比较了无采样,部分采样和空间金字塔采样方法构建PLBP纹理描述符的性能。 讨论了金字塔生成方法和金字塔级别对基于PLBP的图像分类性能的影响。 与现有的多分辨率LBP描述符相比,PLBP具有令人满意的性能和较低的计算成本。
1