Linux下使用gcc编译 gcc mdio.c -o mdio 使用方法 usage: mdio mdio read mdio mdio write example: mdio eth0 0x1
2024-04-08 15:49:57 2KB linux network MDIO
1
TFTP协议是基于UDP的简单文件传输协议,协议双方为Client和Server.Client和Server之间通过5种消息来传输文件,消息前两个字节Code是消息类型,消息内容随消息类型不同而不同。传输模式有三种:octet,netascii和mail,octet为二进制模式,netascii为文本模式,mail为文本模式,不过收到的文本不是保存到文件,而是打印出来,现在已不常用。DATA消息种数据长度是512字节,最后一个数据包可能会小于512。 本资源基于Qt5.12实现TFTP的Server和Client。
2024-04-02 11:03:35 97KB network TFTPClient TFTPServer
1
Cisco的产品的配置工具,是Cisco ConfigMaker的替代软件。从中小型的路由器,到6500系列的Catalyst 交换机、PIX 防火墙、IP电话以及无线接入点等,CNA都支持。
2024-03-27 04:37:38 1.24MB 网络
1
PacketFence 什么是PacketFence? PacketFence是一个完全受支持的,受信任的,免费和开源的网络访问控制(NAC)系统。 具有令人印象深刻的功能集,包括用于注册和补救的强制门户,集中的有线和无线管理,802.1X支持,有问题的设备的第2层隔离,与IDS解决方案和漏洞扫描程序的集成; PacketFence可用于有效保护网络-从小型到大型异构网络。 您想知道谁在您的网络上吗? 您想根据谁在连接来为您的网络提供不同的访问权限? PacketFence为您服务! 安装 请遵循《提供的说明。 更多信息 自上次发行以来的重大变化请参见。 升级吗? 请参阅《 。 有关更多详细信息和开发人员可见的更改,请参见的。 支持 加入或寻求。 贡献 为了创建最佳的开源NAC解决方案,PacketFence付出了巨大的努力。 您可以通过多种方式为项目做出贡献。 您是网络供应商
2024-03-08 17:39:43 47.48MB network Perl
1
Juniper Networks Network Connect 32位,很好用,欢迎下载。
2024-03-02 15:43:43 1.86MB Juniper Networks Network Connect
1
基于整合生物计算的额叶皮质脑性艾滋病(HIVE)与非脑性艾滋病患者的OAS1网络构建和分析,李昊,王琳,单分子疾病功能网络的构建和分析以确定预后和治疗的新型和潜在疾病目标非常有用。本文整合了基于线性规划和分解过程的网络推断算
2024-02-25 23:16:33 866KB 首发论文
1
L型匹配网络对超声换能器振动性能的影响,方由艳,林书玉,本文设计了一种L型匹配网络, 研究了匹配网络对超声换能器共振频率及其振动特性的影响。理论与实验证明,由两个电感组成的L型匹配
2024-02-25 19:06:56 438KB 首发论文
1
生成绘画火炬 根据作者的,对PyTorch重新。 先决条件 该代码已经在Ubuntu 14.04上进行了测试,以下是需要安装的主要组件: Python3 PyTorch 1.0+ 火炬视觉0.2.0+ 张量板 pyyaml 训练模型 python train.py --config configs/config.yaml 检查点和日志将保存到checkpoints 。 用训练好的模型进行测试 默认情况下,它将在检查点中加载最新保存的模型。 您也可以使用--iter通过迭代选择保存的模型。 训练有素的PyTorch模型:[ ] [] python test_single.py \ --image examples/imagenet/imagenet_patches_ILSVRC2012_val_00008210_input.png \ --mask examples/cen
1
A step-by-step gentle journey through the mathematics of neural networks, and making your own using the Python computer language. Neural networks are a key element of deep learning and artificial intelligence, which today is capable of some truly impressive feats. Yet too few really understand how neural networks actually work. This guide will take you on a fun and unhurried journey, starting from very simple ideas, and gradually building up an understanding of how neural networks work. You won't need any mathematics beyond secondary school, and an accessible introduction to calculus is also included. The ambition of this guide is to make neural networks as accessible as possible to as many readers as possible - there are enough texts for advanced readers already! You'll learn to code in Python and make your own neural network, teaching it to recognise human handwritten numbers, and performing as well as professionally developed networks. Part 1 is about ideas. We introduce the mathematical ideas underlying the neural networks, gently with lots of illustrations and examples. Part 2 is practical. We introduce the popular and easy to learn Python programming language, and gradually builds up a neural network which can learn to recognise human handwritten numbers, easily getting it to perform as well as networks made by professionals. Part 3 extends these ideas further. We push the performance of our neural network to an industry leading 98% using only simple ideas and code, test the network on your own handwriting, take a privileged peek inside the mysterious mind of a neural network, and even get it all working on a Raspberry Pi. All the code in this has been tested to work on a Raspberry Pi Zero.
2024-01-13 11:04:46 4.97MB neural netwo machine lear
1
对最初网络的一份描述性文档。是网络中的圣经,网络由此产生
2024-01-09 15:53:23 182KB TCP/IP
1