微信小程序的模态弹窗自定义组件,可自定义弹窗内容样式weapp-ghoss-modal-master.zip
2022-02-11 01:20:46 142KB 微信小程序
1
考虑多级车辆,公共交通和停车场的多模式动态交通分配的一般公式 由马威和Xidong Pi(AlanPi1992)实施,在卡内基梅隆大学土木和环境工程专业的肖恩钱的建议下进行。 要求 cvxopt 1.1.9 numpy的1.14.2 MNMAPI:MNMAPI是MAC在CMU中开发的流量模拟库,请参阅和 MNM_mcnb:MNMAPI的文件夹接口,请参考 指示 请克隆整个存储库,然后使用jupyter notebook运行Runner.ipynb。 实验 要在exp_config.py中检查实验的详细信息,请参阅该论文。 档案规格 src / exp_config.py:论文中的实验设置 src / gp.py:渐变投影方法 src / models.py:多模式DUE的实现 src / runner.ipynb:运行MMDUE的脚本 img / .:本文中使用的想象 data /
1
该工具允许使用 SISO 系统的复杂频率响应函数 (FRF) 识别模态参数、特征频率、模态阻尼因子和模态残差。 该算法基于- 使用离散时间 z 模型的线性平方复频率估计器 (LSCF) - 最小二乘频域估计器 (LSFD)。 识别顺序的选择和物理极点的选择通过使用频率和阻尼收敛准则的稳定图来辅助。 然后可以自动解释稳定化图表。 该文件夹包含: - 基于具有低阻尼 (OMG.mat, FRF.mat) 或高阻尼 (OMG.mat, FRF_hd.mat) 的数值 4 自由度系统的文件示例 (file_example.m)。 -函数time2frf.m允许以.txt格式加载时间数据(时间,输入,输出),并返回复数FRF和固有频率矢量。 -函数select_frf.m允许在指定频率范围内选择FRF的一部分。 - 函数 lscf.m 在指定阶次或使用指定阶次范围内的稳定图估计特征频率
2021-12-22 20:43:33 2.05MB matlab
1
介绍 一个原生写的简单模态框,兼容IE8。 功能特性 1.支持标签属性关闭弹窗。 2.支持点击弹窗区域外背景关闭弹窗。 3.支持两种打开弹窗动画效果。 4.支持ESC快捷键关闭弹窗。 5.支持打开多个弹窗。 目录结构 │ //根目录 │ modal.html //示例文件 │ ├─css //样式目录 │ modal.css │ └─js //js目录 modal.js 使用说明 js示例 //打开弹窗 modal.init({    el: '#js-modal', //挂载值,必须是标签元素的#id    open: 'show' //show为打开 }); //关闭弹窗 modal.init({    el: '#js-modal', //挂载值,必须是标签元素的#id    open: 'hide' //hide为关闭 }); 属
2021-12-17 14:37:38 7KB JavaScript
1
A NEW INTRODUCTION TO MODAL LOGIC Preface ix Part One: Basic Modal Propositional Logic 1 The Basic Notions 3 The language of PC C) Interpretation D) Further operators F) Interpretation of A , D and s G) Validity (8) Testing for validity: (i) the truth-table method A0) Testing for validity: (ii) the Reductio method A1) Some valid wff of PC A3) Basic modal notions A3) The language of propositional modal logic A6) Validity in propositional modal logic A7) Exercises — 1 B1) Notes B2) 2 The Systems K, T and D 23 Systems of modal logic B3) The system K B4) Proofs of theorems B6) L and M C3) Validity and soundness C6) The system T D1) A definition of validity for T D3) The system D D3) A note on derived rules D5) Consistency D6) Constant wff D7) Exercises — 2 D8) Notes D9) 3 The Systems S4, S5, B, Triv and Ver 51 Iterated modalities E1) The system S4 E3) Modalities in S4 E4) Validity for S4 E6) The system S5 E8) Modalities in S5 E9) Validity for S5 F0) The Brouwerian system F2) Validity for B F3) Some other systems F4) Collapsing into PC F4) Exercises — 3 F8) Notes G0) 4 Testing for validity 72 Semantic diagrams G3) Alternatives in a diagram (80) S4 diagrams (85) S5-diagrams (91) Exercises — 4 (92) Notes (93) 5 Conjunctive Normal Form 94 Equivalence transformations (94) Conjunctive normal form (96) Modal functions and modal degree (97) S5 reduction theorem (98) MCNF theorem A01) Testing formulae in MCNF A03) The completeness of S5 A05) A decision procedure for S5-validity A08) Triv and Ver again A08) Exercises — 5 A10) Notes A10) 6 Completeness 111 Maximal consistent sets of wff A13) Maximal consistent extensions A14) Consistent sets of wff in modal systems A16) Canonical models A17) The completeness of K, T, B, S4 and S5 A19) Triv and Ver again A21) Exercises — 6 A22) Notes A23) Part Two: Normal Modal Systems 7 Canonical Models 127 Temporal interpretations of modal logic A27) Ending time A31) Convergence A34) The frames of canonical models A36) A non-canonical system A39) Exercises — 7 A41) Notes A42) 8 Finite Models 145 The finite model property A45) Establishing the finite model property A45) The completeness of KW A50) Decidability A52) Systems without the finite model property A53) Exercises — 8 A56) Notes A56) 9 Incompleteness 159 Frames and models A59) An incomplete modal system A60) KH and KW A64) Completeness and the finite model property A65) General frames A66) What might we understand by incompleteness? A68) Exercises — 9 A69) Notes A70) 10 Frames and Systems 172 Frames for T, S4, B and S5 A72) Irreflexiveness A76) Compactness A77) S4.3.1 A79) First-order definability A81) Second-order logic A88) Exercises — 10 A89) Notes A90) 11 Strict Implication 193 Historical preamble A93) The 'paradoxes of implication' A94) Material and strict implication A95) The 'Lewis' systems A97) The system SI A98) Lemmon's basis for SI A99) The system S2 B00) The system S3 B00) Validity in S2 and S3 B01) Entailment B02) Exercises — 11 B05) Notes B06) 12 Glimpses Beyond 210 Axiomatic PC B10) Natural deduction B11) Multiply modal logics B17) The expressive power of multi-modal logics B19) Propositional symbols B20) Dynamic logic B20) Neighbourhood semantics B21) Intermediate logics B24) 'Syntactical' approaches to modality B25) Probabilistic semantics B27) Algebraic semantics B29) Exercises — 12 B29) Notes B30) Part Three: Modal Predicate Logic 13 The Lower Predicate Calculus 235 Primitive symbols and formation rules of non-modal LPC B35) Interpretation B37) The Principle of replacement B40) Axiomatization B41) Some theorems of LPC B42) Modal LPC B43) Semantics for modal LPC B43) Systems of modal predicate logic B44) Theorems of modal LPC B44) Validity and soundness B47) De re and de dicto B50) Exercises — 13 B54) Notes B55) 14 The Completeness of Modal LPC 256 Canonical models for Modal LPC B56) Completeness in modal LPC B62) Incompleteness B65) Other incompleteness results B70) The monadic modal LPC B71) Exercises — 14 B72) Notes B72) 15 Expanding Domains 274 Validity without the Barcan Formula B74) Undefined formulae B77) Canonical models without BF B80) Completeness B82) Incompleteness without the Barcan Formula B83) LPC + S4.4 (S4.9) B83) Exercises — 15 B87) Notes B87) 16 Modality and Existence 289 Changing domains B89) The existence predicate B92) Axiomatization of systems with an existence predicate B93) Completeness for existence predicates B96) Incompleteness C02) Expanding languages C02) Possibilist quantification revisited C03) Kripke-style systems C04) Completeness of Kripke-style systems C06) Exercises — 16 C09) Notes C10) 17 Identity and Descriptions 312 Identity in LPC C12) Soundness and completeness C14) Definite descriptions C18) Descriptions and scope C23) Individual constants and function symbols C27) Exercises — 17 C28) Notes C29) 18 Intensional Objects 330 Contingent identity C30) Contingent identity systems C34) Quantifying over all intensional objects C35) Intensional objects and descriptions C42) Intensional predicates C44) Exercises — 18 C47) Notes C48) 19 Further Issues 349 First-order modal theories C49) Multiple indexing C50) Counterpart theory C53) Counterparts or intensional objects? C57) Notes C58) Axioms, Rules and Systems 359 Axioms for normal systems C59) Some normal systems C61) Non- normal systems C63) Modal predicate logic C65) Table I: Normal Modal Systems C67) Table II: Non-normal Modal Systems C68) Solutions to Selected Exercises 369 Bibliography 384 Index 398
2021-12-13 20:27:53 2.95MB MODAL LOGIC
1
此函数用于计算和绘制已识别模态振型之间的模态保证准则 (MAC) 矩阵。
2021-12-03 16:05:50 3KB matlab
1
小程序-弹窗
2021-11-26 18:08:51 10KB 小程序 dialog modal
1
结构动力学模态分析经典教程 适合入门,基本概念讲解很全面
2021-10-28 14:03:04 3.1MB 模态分析 结构动力学
1
用模式对话框来展示操作进度。 具体操作在线程中进行。 通过在线程中进行操作并修改表示进度的变量, 然后再对话框中通过定时器来设置进度,实现多线程情况下的进度控制。
2021-10-27 10:33:18 65KB 多线程 Modal对话框 定时器
1
这是Jquery的一个浮动层插件,比较实用。压缩包中有4个文件夹和我整理说明的一个文档。这四个文件夹分别是4种浮动层样式。
2021-10-26 15:32:53 282KB Jquery浮动层 modal js浮动层
1