华为杯研究生数学建模优秀参考论文总结 数学建模是一种将数学理论和方法应用于解决实际问题的过程。它涉及到数学、计算机科学、物理、工程等多个领域,旨在使用数学工具和方法来描述、分析和解决实际问题。华为杯研究生数学建模竞赛是一项面向研究生的数学建模竞赛,旨在提高研究生的数学建模能力和创新能力。 自2004年以来,华为杯研究生数学建模竞赛每年都会举办,吸引了来自全国各地的研究生参与。该竞赛的主要目的是为了培养研究生的数学建模能力、创新能力和团队协作能力。通过参与该竞赛,研究生可以提高自己的数学建模能力,提高解决实际问题的能力,并且能够与来自全国各地的研究生交流经验和想法。 优秀论文是该竞赛的重要组成部分,每年都会有许多优秀的论文被选出。这些论文涵盖了数学建模的多个方面,包括数学建模方法、算法设计、数据分析等。通过阅读这些论文,研究生可以学习到数学建模的最新方法和技术,提高自己的数学建模能力。 以下是华为杯研究生数学建模优秀参考论文的总结: 2004年优秀论文链接:链接:https://pan.baidu.com/s/1cmP0iPdkf4yBxm4M5wAC6g提取码:xehl 该论文主要介绍了数学建模在实际问题解决中的应用,包括数学模型的建立、算法设计和数据分析等方面。 2005年优秀论文链接:链接:https://pan.baidu.com/s/17veh6dWdMx7F8UNZk2H77w提取码:cmfh 该论文主要介绍了数学建模在数据分析中的应用,包括数据预处理、特征工程和模型评估等方面。 2006年优秀论文链接:链接:https://pan.baidu.com/s/1a3AQ6VRibcBtaAb-glZ_Lg提取码:9fc9 该论文主要介绍了数学建模在优化问题中的应用,包括线性规划、整数规划和动态规划等方面。 2007年优秀论文链接:链接:https://pan.baidu.com/s/1rkdvvBeC8_55WALNhFCTBg提取码:x4kt 该论文主要介绍了数学建模在机器学习中的应用,包括监督学习、无监督学习和半监督学习等方面。 2008年优秀论文链接:链接:https://pan.baidu.com/s/16M_ZEuVtmsa0B5bjZY_p3g提取码:9xvt 该论文主要介绍了数学建模在计算机视觉中的应用,包括图像处理、对象识别和图像分割等方面。 2009年优秀论文链接:链接:https://pan.baidu.com/s/1zqh0Sp7fFgWHNotMNXuL_Q提取码:34hz 该论文主要介绍了数学建模在自然语言处理中的应用,包括文本分析、情感分析和机器翻译等方面。 2010年优秀论文链接:链接:https://pan.baidu.com/s/1m4DUWfkd0O_gmEUWFkJfMA提取码:4zfw 该论文主要介绍了数学建模在推荐系统中的应用,包括协同 Filtering、内容-based Filtering和混合推荐等方面。 2011年优秀论文链接:链接:https://pan.baidu.com/s/1fKLKAeHfJj-NiU7aBzVOSg提取码:7vu7 该论文主要介绍了数学建模在数据挖掘中的应用,包括关联规则挖掘、分类和回归等方面。 2012年优秀论文链接:链接:https://pan.baidu.com/s/1UQaLZEIlEiXnisu5adnIRA提取码:6tee 该论文主要介绍了数学建模在机器人学中的应用,包括机器人运动规划、机器人视觉和机器人 manipulation 等方面。 2013年优秀论文链接:链接:https://pan.baidu.com/s/1iTjAC2el9KJSqx-tMjS07w提取码:8lu7 该论文主要介绍了数学建模在计算生物学中的应用,包括基因表达分析、蛋白质结构预测和基因调控网络等方面。 2014年优秀论文链接:链接:https://pan.baidu.com/s/120zFj_8vOoxETneYCSUqyA提取码:sjp6 该论文主要介绍了数学建模在金融工程中的应用,包括风险管理、投资组合优化和衍生品定价等方面。 2015年优秀论文链接:链接:https://pan.baidu.com/s/1lxI1I3Ul6IYw5xa0IL7sTQ提取码:cbki 该论文主要介绍了数学建模在计算机网络中的应用,包括网络协议设计、网络优化和网络安全等方面。 2016年优秀论文链接:链接:https://pan.baidu.com/s/1NU2mXOLRCChh8ZiIABvngw提取码:cgip 该论文主要介绍了数学建模在机器学习中的应用,包括深度学习、自然语言处理和计算机视觉等方面。 2017年优秀论文链接:链接:https://pan.baidu.com/s/1vkOrBbex5XygL0IIAoEylg提取码:vyt5 该论文主要介绍了数学建模在数据科学中的应用,包括数据挖掘、数据可视化和数据分析等方面。 2018年优秀论文链接:链接:https://pan.baidu.com/s/1lVLhic4apiYiMJGjcjwETg提取码:qsp8 该论文主要介绍了数学建模在人工智能中的应用,包括机器学习、自然语言处理和计算机视觉等方面。 2019年优秀论文链接:链接:https://pan.baidu.com/s/1RTvIBh1e6WIreSMg_jy99w提取码:t0qh 该论文主要介绍了数学建模在数据分析中的应用,包括数据预处理、数据可视化和数据挖掘等方面。 2020年优秀论文链接:链接:https://pan.baidu.com/s/1dzL8XvkquzpTOGxmBZnOig提取码:c919 该论文主要介绍了数学建模在机器学习中的应用,包括监督学习、无监督学习和半监督学习等方面。 2021年优秀论文链接:链接:https://pan.baidu.com/s/1Qb5wAO39HMVycMOoR8yJDg提取码:5yth 该论文主要介绍了数学建模在计算机网络中的应用,包括网络协议设计、网络优化和网络安全等方面。 2022年优秀论文链接:链接:https://pan.baidu.com/s/1zpWz7pS72VvE-LLd2NA1-A提取码:ftbl 该论文主要介绍了数学建模在数据科学中的应用,包括数据挖掘、数据可视化和数据分析等方面。 通过阅读这些优秀论文,研究生可以学习到数学建模的最新方法和技术,提高自己的数学建模能力,并且能够与来自全国各地的研究生交流经验和想法。
2024-09-11 16:37:02 242KB 数学建模
1
2024 年高教社杯全国大学生数学建模竞赛 C 题 农作物的种植策略 完整参考论文
2024-09-07 22:31:20 1.93MB 数学建模 国赛C题 matlab python
1
搭建自己的OJ,没有题库,OJ易建,题库难寻。 HydroOJ/HUSTOJ均可使用。 此文件为 Hydro 题库,您可以将其一键导入任何基于 Hydro 的系统。 使用管理员账号登录后,在题目列表右侧找到【从 Hydro 导入】,上传本压缩包即可。 如果单个压缩包过大(超过 256M),不便于通过 Web 页面上传,也可以使用其他工具上传压缩包到服务器后, 在终端中使用 "hydrooj cli problem import system 压缩包路径" 命令进行导入。 如果您正在使用 HUSTOJ 或是 UOJ,推荐您备份后直接运行 Hydro 安装程序。 安装程序将会导入您已有的 题目/用户/比赛/作业/提交记录,所有数据均不会丢失。 一键安装: LANG=zh . <(curl https://hydro.ac/setup.sh) 以 root 用户粘贴到终端内运行。
2024-08-28 16:10:50 66KB 蓝桥杯
1
化处理,采用 Pearson 相关系数和 Wasserstein 距离来分析饮食习惯与健康的关联。主成分分析法被用来确定各个评价指标的权重,通过多目标模糊综合评判模型,得出居民饮食习惯的综合评判值,进而揭示存在的问题。 对于问题二,我们需要探讨生活习惯和饮食习惯是否与个体的社会属性(如年龄、性别、婚姻状况、文化程度、职业等)相关。通过量化这些生活习惯和饮食习惯的评价指标,然后计算与个人属性的协方差矩阵和相关系数,可以识别出各因素之间的相关性和相关程度。 问题三关注的是慢性病与生活习惯多个因素之间的关系。通过灰色关联分析法,我们可以量化吸烟、饮酒、饮食习惯、生活习惯、工作性质和运动等因素与常见慢性病的相关程度。接着,采用二分类 BP 神经网络构建模型,揭示这些因素与慢性病发病的关系。 至于问题四,我们基于问题三的结果,对居民进行分类,比如分为患病但饮食健康、患病且饮食不健康、不患病且饮食健康和不患病但饮食不健康四类。利用支持向量机(SVM)进行二分类,为每类居民提供定制的健康改善建议,包括膳食调整和运动方案。此外,通过灵敏度检验确保模型的稳定性和有效性。 总结来说,这篇论文运用了多种数学建模方法,包括主成分分析、模糊综合评判、灰色关联分析和神经网络,对城市居民的健康状况进行了深度研究。通过量化和分析饮食习惯,找出不合理之处;探究生活习惯和饮食习惯与个体特征的联系;接着,分析慢性病与生活习惯多因素的关联;为不同健康状态的居民提供个性化建议。这些方法的应用有助于理解影响城市居民健康的复杂因素,并为公共卫生政策的制定提供科学依据。关键词涉及的灰色关联分析法、主成分分析法、多目标模糊综合评判法和二分类 BP 神经网络,都是解决此类问题的关键工具,它们的结合使用展示了数学建模在解决实际问题中的强大能力。
2024-08-27 10:18:30 1.29MB 毕业设计
1
### 相关知识点 #### 1. 字符串索引访问 **知识点解析:** - 在C++中,可以通过索引直接访问字符串中的特定字符。字符串的索引是从0开始的。 - 对于字符串 `string a = "Hello C++"`,`a[0]` 将返回 `'H'`,`a[1]` 返回 `'e'`,依此类推。 **题目分析:** - 为了获取字符 `'C'`,我们需要找到 `'C'` 在字符串 `"Hello C++"` 中的位置。 - `'C'` 位于字符串的第7个位置,但因为索引是从0开始的,所以 `'C'` 的索引实际上是6。 - 因此,正确答案是 `a[6]`,即选项 **B**。 #### 2. 数制转换 **知识点解析:** - 在计算机科学中,常见的数制包括二进制(基数为2)、八进制(基数为8)、十进制(基数为10)和十六进制(基数为16)。 - 不同数制之间的转换非常重要,尤其是从其他数制转换到十进制。 **题目分析:** - 需要将各选项转换为十进制来比较其大小。 - A. (1234)_5 = 1 * 5^3 + 2 * 5^2 + 3 * 5^1 + 4 * 5^0 = 125 + 50 + 15 + 4 = 194 - B. (302)_8 = 3 * 8^2 + 0 * 8^1 + 2 * 8^0 = 192 + 0 + 2 = 194 - C. (11000100)_2 = 1 * 2^7 + 1 * 2^6 + 0 * 2^5 + 0 * 2^4 + 0 * 2^3 + 1 * 2^2 + 0 * 2^1 + 0 * 2^0 = 128 + 64 + 0 + 0 + 0 + 4 + 0 + 0 = 196 - D. (c2)_16 = 12 * 16^1 + 2 * 16^0 = 192 + 2 = 194 - 所以,数值与其他项不同的是选项 **C**,即 (11000100)_2。 #### 3. 前缀自减运算符 **知识点解析:** - `--i` 是前缀自减运算符,它首先将 `i` 的值减1,然后返回新值。 - `i--` 是后缀自减运算符,它先返回 `i` 的当前值,然后才将 `i` 减1。 **题目分析:** - 定义变量 `int i = 0, a;` - 执行 `a = --i;` - `i` 被减1变为 `-1`,然后将 `-1` 赋值给 `a`。 - 因此,`i` 和 `a` 的值都是 `-1`。 - 正确答案是选项 **C**,即 `-1、-1`。 #### 4. 指针算术 **知识点解析:** - `*(a + 5)` 可以理解为获取数组 `a` 中第6个元素的值。 - 在C++中,`a` 实际上是指向数组第一个元素的指针,`a + 5` 指向数组中的第6个元素。 - `*(a + 5)` 等价于 `a[5]`。 **题目分析:** - 给定数组 `int a[10] = {4, 6, 1, 3, 8, 7, 2, 9, 0, 5};` - `*(a + 5)` 实际上是 `a[5]` 的值。 - `a[5]` 的值为 7。 - 正确答案是选项 **A**,即 7。 #### 5. 递归函数 **知识点解析:** - 递归是一种解决问题的方法,其中函数调用自身来解决子问题。 - 在编写递归函数时,需要确定基本情况(base case),以防止无限循环。 **题目分析:** - 函数 `func(int x, int y, int z)` 通过递归调用来计算结果。 - 当 `x == 1 || y == 1 || z == 1` 时,返回 1。 - 当 `x < y && x < z` 时,调用 `func(x, y - 1, z) + func(x, y, z - 1)`。 - 当 `y < x && y < z` 时,调用 `func(x - 1, y, z) + func(x, y, z - 1)`。 - 否则,调用 `func(x - 1, y, z) + func(x, y - 1, z)`。 - 对于 `func(3, 3, 2)`: - 调用 `func(3, 2, 2) + func(3, 3, 1)`。 - `func(3, 2, 2)` 会继续调用,最终返回 2。 - `func(3, 3, 1)` 也会继续调用,最终返回 3。 - 结果为 2 + 3 = 5。 - 正确答案是选项 **A**,即 5。 #### 编程题解析 **第 6 题:求和题目** - 这是一道简单的遍历数组并累加符合条件的元素的问题。 - 主要是判断每个元素是否大于等于10,如果是,则累加到结果中。 **第 7 题:数位和为偶数的数** - 这道题目涉及到了数位操作。 - 需要遍历从1到n的所有整数,并计算每个整数的数位和。 - 如果数位和为偶数,则将该整数添加到结果列表中。 **第 8 题:填涂颜色** - 这道题目主要考察了二维数组的应用和逻辑处理能力。 - 通过计算被填色的行列数,进而得出未被填色的小方格数量。 **第 9 题:外观数列** - 外观数列是一个非常有趣且具有挑战性的数列。 - 需要理解每一步的规则,并通过递归或迭代的方式来生成数列。 - 该题目主要考察递归或循环算法的应用。
2024-08-24 17:03:25 153KB 蓝桥杯
1
2024亚太杯数学建模论文洪水的频率和严重程度与人口增长趋势相近。迅猛的人口增长,扩大耕地,围湖造田,乱砍滥伐等人为破坏不断地改变着地表状态,改变了汇流条件,加剧了洪灾程度。2023 年,全球洪水造成了数十亿美元的经济损失。因此构建与研究洪水事件预测发生模型显得尤为重要,本文基于机器学习回归,通过对比分析,构建了预测效果较好的洪水概率预测模型,为灾害防治起到一定贡献作用。 ### 2024亚太杯数学建模B题:基于机器学习回归的洪水预测模型研究 #### 一、研究背景及目的 随着全球人口的快速增长以及人类活动对自然环境的影响日益加剧,洪水的发生频率和严重程度也在逐年上升。据文中描述,2023年全球因洪水造成的经济损失高达数十亿美元。为了有效减轻洪水灾害带来的负面影响,构建一个能够准确预测洪水事件发生的模型变得至关重要。本研究旨在通过机器学习回归技术,构建并优化洪水预测模型,以期提高灾害预防和应对能力。 #### 二、研究方法概述 1. **相关性分析**:通过计算皮尔逊相关系数来评估各个指标与洪水发生之间的关系强度。此步骤帮助确定哪些因素对洪水发生的可能性有显著影响。 - **高相关性指标**:森林砍伐、滑坡、气候变化、人口得分、淤积、河流管理、地形排水、大坝质量和基础设施恶化。 - **低相关性指标**:季风强度、海岸脆弱性、侵蚀、排水系统、规划不足、城市化、流域、政策因素、无效防灾、农业实践、湿地损失。 2. **K聚类分析**:用于将洪水事件按照风险等级分为高中低三个类别,并通过CRITIC权重分析法确定每个指标的权重。随后,建立了有序逻辑回归模型,并通过准确率、召回率等指标对其性能进行了评估。 3. **模型对比与优化**:在问题三中,通过对问题二中建立的有序逻辑回归模型进行进一步分析,剔除了两个对结果贡献较小的指标,选择了五个关键指标(河流管理、气候变化、淤积、基础设施恶化、人口得分),构建了三种不同的模型(线性回归、梯度下降法线性回归、梯度提升树),并对这些模型进行了对比分析,最终选择了性能最优的梯度提升树模型。 4. **预测与验证**:利用问题三中选定的最佳模型对预测数据集进行洪水发生概率的预测,并通过S-W检验和K-S检验验证了预测结果的准确性。 #### 三、具体实施步骤 1. **问题一**:分析了各个指标与洪水发生的相关性,并绘制了热力图和柱状图以直观展示结果。 2. **问题二**: - 使用K聚类分析将洪水概率分为高中低三个等级。 - 应用CRITIC权重分析法计算各指标的权重。 - 基于上述结果构建了有序逻辑回归模型,并通过准确率、召回率等指标评估模型性能。 3. **问题三**: - 在问题二的基础上进一步优化模型,选择五个关键指标构建三种模型(线性回归、梯度下降法线性回归、梯度提升树)。 - 通过模型对比分析选择了梯度提升树作为最佳模型。 4. **问题四**:利用问题三中的最佳模型进行实际数据预测,并验证了预测结果的有效性和可靠性。 #### 四、结论与展望 通过上述研究,本文成功构建了一个基于机器学习回归的洪水预测模型。该模型不仅能够有效地预测洪水发生的概率,而且还可以为相关部门提供科学依据,以便采取更加有效的防灾减灾措施。未来的研究可以进一步探索更多影响洪水的因素,并尝试使用更先进的机器学习算法来提高预测精度。此外,还可以考虑将该模型应用于实际场景中,以评估其在真实世界中的应用效果。
2024-08-17 19:01:27 431KB 机器学习
1
### 2010高教社杯全国大学生数学建模竞赛优秀论文——储油罐的变位识别与罐容表标定模型 #### 概述 2010年高教社杯全国大学生数学建模竞赛是一场重要的学术竞赛活动,旨在通过解决实际问题来培养学生的创新能力和实践能力。本次竞赛的优秀论文《2010高教社杯全国大学生数学建模竞赛优秀论文——储油罐的变位识别与罐容表标定模型》由四川大学的朱名发、杨博和刘娜三位同学共同撰写。该论文主要探讨了储油罐在经历纵向倾斜和横向偏转后的变位识别与罐容表标定问题。 #### 知识点解析 ##### 储油罐的变位识别与罐容表标定 储油罐是用于存储燃油的重要设施,在长期使用过程中可能会因为地基变形等因素而发生变位。这种变位会导致罐容表发生变化,从而影响油位计量管理系统的准确性。因此,定期对罐容表进行重新标定是必要的。 ##### 数学模型建立 - **模型Ⅰ**:针对小椭圆型储油罐,研究罐体变位(纵向倾斜)后对罐容表的影响。通过选取特定的研究截面,利用切片积分法建立模型。模型首先考虑了罐体无变位的情况,然后分析了罐体倾斜角为α=4.1°的纵向变位情况。通过引入修正函数\[ V_g(h) = V_0(h) - \Delta V(h) \],其中\( V_0(h) \)为实验数值,\(\Delta V(h)\)为修正量,得到了精确的带修正优化的微分几何模型\[ V(h, \alpha) = f(h, \alpha) - g(h) \]。此模型可以准确地反映罐体变位对罐容表的影响,并能够给出合理的罐容表标定值。 - **模型Ⅱ**:针对实际储油罐(图1所示),研究罐体变位(纵向倾斜角度α和横向偏转角度β)后罐容表的标定问题。通过分析储油罐内部结构,选取特定研究截面,采用维数锐化技术,将三维问题简化为二维问题。由此建立的基本关系函数为\[ V(h, \alpha, \beta) \],并通过实际采集的数据确定了变位参数α=2.1°和β=4.6°,从而完成了罐容表的标定。 ##### 模型优化与验证 - **优化**:通过对模型进行修正优化,提高了模型的稳定性和适用性。 - **验证**:通过对比实验数据与模型预测结果,验证了模型的有效性和准确性。 #### 关键技术点 1. **微分几何模型**:利用微分几何理论,通过分析储油罐内部空间结构,建立数学模型,准确描述储油罐变位后油量与油位高度的关系。 2. **切片积分法**:通过选取特定的研究截面,将储油罐内部空间分为多个薄层,对每个薄层进行积分运算,得到罐内油量的表达式。 3. **维数锐化**:通过选取特定的研究截面,将复杂的三维问题简化为较简单的二维问题,降低了问题的复杂度,便于模型建立和求解。 4. **MATLAB编程**:利用MATLAB软件进行数据处理和模型求解,提高了计算效率和准确性。 #### 结论 本论文通过建立两个数学模型,有效地解决了储油罐变位识别与罐容表标定问题。模型Ⅰ适用于简单的小椭圆型储油罐,而模型Ⅱ则可以应对更为复杂的真实储油罐。通过实验数据验证,证明了模型的有效性和准确性。此外,通过模型优化,提高了模型的稳定性和适用范围。这一研究成果不仅对储油罐管理和维护具有重要意义,也为后续类似问题的解决提供了参考。
2024-08-16 11:18:46 902KB
1
本文以某校园供水系统为研究对象, 当前校园供水系统是校园公共设施的重要组成部分,学校为保障校园供水的正常运行需要投入人力、物力以及财力。随着智能水表的普及,可以从中获取大量的实时供水的数据,后勤部门通过数据的分析,解决供水系统中存在的一些问题,提高校园服务和管理水平。 针对问题一,借助EXCEL软件的数据储存与图像功能,先把四个季度的数据导入EXCEL软件,然后绘制条形统计图(见附录1),统计和分析各个水表的变化规律;利用PANDAS软件把校园内的各个功能区进行划分,求各个功能区的用水情况,分析其用水特征,最后(见附录2)。 针对问题二,根据水表之间的关系模型,一级水表约等于一级水表下所以二级水表的和。利用EXCEL软件, 分析一级水表的用水总量与各个二级水表的用水总量做对比,同理二级水表与三级水表对比,以及三级水表与四级水表对比(见表4-1),经数据分析,得出有一部分数据异常,剔除异常数据(可能是水表损坏等原因)。 针对问题三,我们构建了小波神经网络模型,对于用水量数据进行了预测,我们发现预测结果与实际结果比较接近,可以用网络来判定是否存在损漏问题。
2024-08-14 16:57:50 86.96MB pandas 数据分析 神经网络 网络
1
足球预测 这是用于预测足球比赛(世界杯,欧洲杯和美洲杯)比赛结果的统计预测模型。 该模型在按进攻和防守强度逐场对球队进行评级后,被称为顺序进攻-防守(ODM-S)。 它基于数学家Anjela Govan,Amy Langville和Carl Meyer的。 我们讨论了它是如何工作的以及如何解释预测。 它的准确性和内部运作在。 这个怎么运作 第1步:为团队评分 ODM-S首先根据攻击和防御实力来评估团队。 得分目标是攻击强度的度量,而失落的目标是防御强度的度量。 评分会逐场更新。 通常,一支球队的得分在获胜后会增加,而在输掉后会下降,但并非总是如此,因为要考虑到日程安排和主场优势。 当一支高评价的球队在主场与弱评价的球队取得4-3的胜利时,其评价会下降,而对手的评价会上升。 为了使评分反映球队如何与最佳球员比赛,该模型仅对那些可能出现这些球员的比赛中的球队进行评分,例如锦标赛预选赛和锦标赛
2024-07-26 12:04:49 117.69MB R
1
2023年数学建模国赛省一高教社杯,个人原创资源,禁止转载,违权必究,具体源程序代码及word版私q:2935790052
2024-07-16 14:04:05 1.24MB
1