生长神经气体 (GNG) 神经网络属于拓扑表示网络 (TRN) 类。 它可以学习有监督和无监督。 在这里,实现并演示了在线无监督学习模式。 它的学习方法结合了改良的 Kohonen 学习来调整神经元的位置,并结合竞争性赫布学习 (CHL) 来进行连接。 有关详细信息,请参阅参考文献。 [1]。 为了使主脚本 (gng_lax.m) 发挥作用,您必须首先使用相应的数据生成器选择并生成流形(数据)。 欲获得有关竞争性学习方法系列的详尽报告,请咨询参考。 [2]。 参考[1] Fritzke B. “A Growing Neural Gas Network Learns Topologies”,神经信息处理系统进展 7,麻省理工学院出版社,马萨诸塞州剑桥,1995 年。 [2] Fritzke B.“一些竞争性学习方法”,1997 年可在: https ://pdfs.semanticsch
2021-05-29 21:03:02 10KB matlab
1
Growing Neural Gas Network.pdf
2021-03-15 18:16:25 598KB GNG
1
Growing Object-Oriented Software, Guided by Tests 英文无水印原版pdf pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 查看此书详细信息请在美国亚马逊官网搜索此书
2019-12-21 21:22:34 3.91MB Growing Software Guided Tests
1
实现计算机视觉(Computer Vision)中的Haralick区域增长算法(Haralick Region Growing Algorithm)用于实现图像分割。
1