内容概要:本文详细介绍了基于TI ADS54J60的FMC HPC采集卡的设计与实现。该采集卡拥有4个通道,每个通道支持1Gsps采样率和16bit精度。文章涵盖了硬件设计的关键要素,如电源管理、PCB布局、时钟分配以及FPGA代码实现,尤其是针对SPI配置、JESD204B接口和数据缓存机制进行了深入探讨。此外,文中还提供了实际测试方法和优化技巧,确保系统的高性能和稳定性。 适合人群:从事高速信号采集系统设计的硬件工程师、FPGA开发者及相关领域的研究人员。 使用场景及目标:适用于需要高精度、多通道同步采集的应用场景,如雷达中频采集、通信设备测试等。目标是帮助读者掌握从硬件设计到软件实现的完整流程,提升系统性能和可靠性。 其他说明:文中提到的所有设计文件均已公开,便于读者复现和进一步改进。同时,作者分享了许多实战经验和常见问题解决方案,有助于减少开发过程中遇到的技术障碍。
2025-06-09 17:12:46 299KB
1
在Xilinx 7系列FPGA入门级图像处理中,我们主要关注的是如何利用FPGA进行图像处理,并通过HDMI接口实现图像的显示。这个过程涵盖了硬件接口设计、时序分析以及软件工具的使用等多个关键环节。 1. **HDMI简介**: HDMI(High-Definition Multimedia Interface)是一种数字视频/音频接口技术,用于在消费类电子设备之间传输未压缩的高清视频和多声道音频数据。在FPGA应用中,HDMI接口是将图像数据传输到显示器的关键。 2. **基于FPGA的HDMI接口设计**: 设计FPGA与HDMI接口的关键在于理解和实现HDMI协议,包括TMDS(Transition Minimized Differential Signaling)编码、TMDS通道的配置、以及必要的时钟和控制信号。在Xilinx 7系列FPGA中,通常会使用专用的IP核来处理这些复杂的协议细节。 3. **HDMI时序分析**: HDMI传输中的时序分析至关重要,因为它确保了数据正确无误地被接收。这涉及到像素时钟、数据有效时间、同步信号(如HS(Horizontal Sync)和VS(Vertical Sync))的精确控制,以保持与显示器的同步。 4. **720P和1080P HDMI显示**: - **720P HDMI显示**:720P是一种高清分辨率,表示1280x720像素,逐行扫描。在设计中,需要分析硬件电路,包括连接FPGA的HDMI发送器和接收器,以及设置正确的分辨率参数。工程文件设计包括创建适当的VHDL或Verilog代码,定义数据路径和控制逻辑,以及在Vivado中建立相应的工程。 - **1080P HDMI显示**:1080P是更高的分辨率,1920x1080像素,同样为逐行扫描。设计1080P HDMI显示需要更复杂的数据处理和更精细的时序控制,以确保高清晰度图像的无损传输。 5. **工程文件设计和Vivado使用**: 创建工程文件涉及选择正确的IP核,配置时序参数,以及编写用户自定义逻辑代码。在Vivado中,用户需要建立一个新的工程,导入必要的IP核,配置其属性,连接外部接口,最后综合和实现设计,生成比特流文件。 6. **实验结果**: 完成设计后,通过下载比特流文件到FPGA并连接到HDMI显示器,可以验证图像是否正确显示。如果一切顺利,应该能看到清晰的720P或1080P图像,没有偏色或其他显示问题。 这个过程对于初学者来说可能较为复杂,但通过逐步学习和实践,可以掌握FPGA在图像处理中的应用,为后续的高级图像算法实现打下坚实基础。在学习过程中,参考开源社区的资源和大神的指导是非常有价值的,它们能提供实践案例和解决问题的技巧。在使用Vivado 2017这样的现代开发工具时,理解其工作流程和界面将有助于提升设计效率。
2025-06-08 16:46:54 11.06MB 图像处理 fpga开发
1
内容概要:本文详细介绍了如何利用FPGA和Verilog编程实现16x16点阵屏的汉字动态显示系统。首先讨论了汉字存储方案,采用二维数组存储点阵数据并用case语句进行硬编码。接着阐述了动态扫描部分,运用双缓冲技术和状态机实现稳定的扫描机制。文中还讲解了左右移动、调速、暂停等功能的具体实现方法,如通过改变时钟分频系数调节速度,以及通过使能信号控制暂停。此外,作者分享了一些调试经验和移植到Vivado平台时需要注意的问题,如时钟约束和IP核替换。 适合人群:具有一定FPGA和Verilog编程基础的学习者、开发者。 使用场景及目标:适用于希望深入了解FPGA点阵屏显示原理和技术细节的人群,目标是能够独立完成类似项目的开发。 其他说明:文章提供了大量代码片段作为参考,帮助读者更好地理解和实践相关技术。同时提醒读者注意一些常见的错误和注意事项,如点阵消隐、跨时钟域信号同步等。
2025-06-08 15:54:36 133KB FPGA Verilog Quartus
1
内容概要:本文档详细介绍了基于Xilinx Kintex-7 FPGA的MicroBlaze处理器系统的参考设计及其在仿真和硬件环境中的实现方法。该系统包括主内存、RS232等常用外设,通过IP Integrator进行集成。文档提供了设置仿真环境的具体步骤,包括编译库、修改测试平台脚本、执行仿真等。此外,还描述了如何在硬件上运行设计,包括连接硬件、配置终端程序、下载比特流和软件应用。文档提供了两个示例应用程序:hello_uart用于测试UART功能,hello_mem用于测试DDR3内存控制器的功能。 适合人群:具备一定FPGA开发基础,特别是熟悉Xilinx工具链(如Vivado、SDK)的研发人员。 使用场景及目标:①学习如何使用IP Integrator构建和验证MicroBlaze处理器系统;②掌握在仿真环境中测试和调试MicroBlaze系统的方法;③了解如何将设计部署到实际硬件(如KC705评估板)并运行软件应用。 其他说明:文档提供了详细的步骤和命令行指令,帮助用户从头开始搭建和测试MicroBlaze处理器系统。建议读者按照文档中的指导逐步操作,并结合提供的示例项目进行实践。此外,文档还附有参考资料链接,便于进一步深入学习。
2025-06-08 00:44:53 4.43MB FPGA软核
1
中海大-计算机组成原理 single_cycle_cpu 单周期CPU pipeline_cpu 五级流水线CPU pipeline_CU_cpu 控制逻辑集成为CU模块 6pipeline_CU_cpu 将五级流水线扩展为6级流水线 vivado 2018.3 FPGA开发板
2025-06-06 16:52:08 36.55MB 计算机组成原理 CPU FPGA Vivado
1
,No.26 基于FPGA的cordic算法实现,输出sin和cos波形(quartusii版本),包括程序操作录像,算法程序 CORDIC为Coordinate rotation digital computer的缩写,来自于J.E.Volder发表于1959年的lunwen中,是一种不同于“paper and penci\思路的一种数字计算方法,当时专为用于实时数字计算如导航方程中的三角关系和高速率三角函数坐标转而开发。 如今看来,CORDIC非但没有局限于以上方面,反而在各个数字计算如信号处理、图像处理、矩阵计算、自动控制和航空航天等各领域获得了广泛的使用并成为了各行业不可替代的基石。 所谓万物皆可信号处理,信号处理相关行业的各位与CORDIC自然难舍难分。 又所谓“为人不识CORDIC,读尽算法也枉然”,CORDIC算法并不新鲜.今天老生常谈下CORDIC算法,尽量将每一步公式的变展示清楚,希望对新手有用。 1.软件版本 Quartusii18.0+ModelSim-Altera 6.6d Starter Edition 2.运行方法 使用Quartusi18.0版本打开FPG
2025-06-06 16:13:19 618KB css3
1
基于fpga 的四层电梯,仿真通过 带tb文件 基于fpga 的四层电梯,仿真通过 带tb文件 基于fpga 的四层电梯,仿真通过 带tb文件 基于fpga 的四层电梯,仿真通过 带tb文件 基于fpga 的四层电梯,仿真通过 带tb文件 基于fpga 的四层电梯,仿真通过 带tb文件 基于fpga 的四层电梯,仿真通过 带tb文件 基于fpga 的四层电梯,仿真通过 带tb文件 基于fpga 的四层电梯,仿真通过 带tb文件 基于fpga 的四层电梯,仿真通过 带tb文件 基于fpga 的四层电梯,仿真通过 带tb文件 基于fpga 的四层电梯,仿真通过 带tb文件 基于fpga 的四层电梯,仿真通过 带tb文件 基于fpga 的四层电梯,仿真通过 带tb文件 基于fpga 的四层电梯,仿真通过 带tb文件 基于fpga 的四层电梯,仿真通过 带tb文件 基于fpga 的四层电梯,仿真通过 带tb文件
2025-06-06 11:15:18 527KB fpga开发
1
### FPGA设计高级技巧—Xilinx篇 #### 一、综合工具与代码风格 在FPGA设计领域,选择合适的综合工具及编码风格对于实现高性能的设计至关重要。这部分内容将深入探讨综合工具的选择及其对代码风格的影响。 ##### 2.1 理解综合两个过程 综合是将高层次的设计(如Verilog或VHDL)转换为低层次的硬件描述(例如门级网表)的过程。这一过程可以分为两个主要步骤:逻辑综合与物理综合。逻辑综合侧重于将设计转换为逻辑门的形式,而物理综合则关注于布局布线以及优化硬件资源的利用。 ##### 2.2 不同综合工具的性能 不同的综合工具因其算法的不同,在性能、面积和功耗方面会有所差异。例如,Synplify Pro 和 Vivado HLS 是两种常见的FPGA综合工具,它们在处理复杂设计时可能会有不同的表现。了解这些工具的特点并根据具体需求选择合适的工具非常重要。 ##### 2.3 综合性能对Coding Style影响 编码风格直接影响综合工具的工作效率。良好的编码习惯能够帮助综合工具更好地理解和优化设计。例如,使用层次化的模块设计可以使设计更易于理解和维护;使用并行结构而不是嵌套结构可以减少综合时间并提高综合质量。 #### 二、FPGA器件结构:VirtexII VirtexII系列是Xilinx推出的一款高性能FPGA器件,其结构特点如下: ##### 3.1 器件结构对Coding Style的影响 - **3.1.1 FPGA结构**:介绍了FPGA的基本结构,包括可编程逻辑块(CLBs)、输入输出块(IOBs)和可编程互联资源。 - **3.1.2 ASIC结构**:对比了ASIC与FPGA的结构差异,强调了FPGA在灵活性方面的优势。 - **3.1.3 Coding Style的对比**:讨论了针对不同FPGA架构的编码风格差异。 ##### 3.2 VirtexII功能概述 VirtexII系列提供了丰富的资源和特性,如高速DSP模块、大容量Block RAM等,这些特性使得VirtexII在高性能计算和通信领域有着广泛的应用。 ##### 3.3 结构概述 - **3.3.1 CLB**:可编程逻辑块(CLB)是FPGA的核心单元,每个CLB由两个slice组成,每个slice包含两个4输入查找表(LUTs)、触发器(FFs)和其他辅助逻辑。 - **3.3.2 Slice**:进一步详细介绍了slice的内部结构,包括LUTs、触发器和其他资源。 - **3.3.3 LUT**:解释了LUT的功能和使用方法,LUT是实现组合逻辑的基础。 - **3.3.4 MUXFX**:MUXFX是一种特殊的多路选择器,用于连接LUT和其他资源。 - **3.3.5 CarryLogic和ArithmeticLogic Gates**:介绍了算术逻辑单元的实现方法,包括进位逻辑和算术逻辑门。 - **3.3.6 CarryLogic**:专门讲解了进位逻辑的实现细节。 - **3.3.7 SOP**:介绍了基于LUT的加法器和其他算术操作的实现方式。 - **3.3.8 FFX/FFY**:介绍了触发器的配置选项和使用场景。 #### 三、设计技巧 这部分内容详细介绍了如何通过各种技巧来优化FPGA设计,包括但不限于: - **4.1 合理选择加法电路**:介绍如何根据设计需求选择合适的加法电路类型,比如串行进位加法器或超前进位加法器。 - **4.2 IF语句和Case语句**:讨论了如何合理使用这些控制结构以优化综合结果。 - **4.3 减少关键路径的逻辑级数**:提供了几种方法来减少关键路径中的逻辑级数,从而提高设计的速度。 #### 四、如何使用后端工具 后端工具在FPGA设计流程中扮演着重要的角色,包括布局布线、时序分析等。这部分内容重点介绍了以下几点: - **5.1 布局布线**:讨论了如何有效地进行布局布线,包括布局布线策略、关键电路的处理方法等。 - **5.2 FPGA Editor的作用**:介绍了FPGA Editor如何帮助用户进行手动布局布线调整。 - **5.3 Floor Planner的作用**:解释了Floor Planner在资源规划和布局布线中的作用。 - **5.4 Timing Analyzer的作用**:阐述了Timing Analyzer如何帮助用户进行精确的时序分析和约束设定。 #### 五、综合运用 这部分内容涉及了如何将前面所学的各种技巧和工具综合应用于实际设计中,包括但不限于: - **6.1 可能成为关键路径的电路**:列举了一些容易成为关键路径的典型电路,并提供了相应的优化建议。 - **6.2 如何提高芯片速度**:提供了一系列方法来提高设计的整体速度,如采用BUFGS、设置Maxdelay和Maxskew等。 - **6.3 如何降低芯片面积**:提出了多种降低芯片面积的方法,比如利用分布式RAM代替Block RAM或通道计数器等。 这份文档详细介绍了FPGA设计中的一些高级技巧和最佳实践,特别是针对Xilinx的VirtexII系列器件。通过学习这些内容,读者可以更好地掌握如何优化FPGA设计,提高设计的性能和效率。
2025-06-03 21:29:28 2.94MB fpga xilinx vhdl
1
该项目利用FPGA(Field-Programmable Gate Array)芯片进行设计,旨在实现一个会议发言限时器。软件部分由VHDL(VHSIC Hardware Description Language)编写,负责设定0到99分钟的定时,并通过四位数码管准确显示剩余时间。此外,它还具备暂停和恢复计时的功能,在倒计时最后一分钟会发出警告,计时结束会有长音提示,保证精确度达到±0.1秒/分钟。 硬件设计包含了外围电路,确保了系统的稳定运行。其核心部件是一个直流5V供电的设计,工作电流低至500mA,以节约能源且减少发热。LED灯作为视觉反馈,初始启动时点亮,结束后熄灭;在暂停状态下,则交替闪烁,以指示当前状态。 用户指南如下: 1. 将装置连接到5V电源,确保输入电压稳定。 2. 使用开关或按键启动计时,四位数码管将显示剩余分钟数。 3. 当需要暂停时,按相应的暂停键,LED灯将开始闪烁。 4. 恢复计时只需再次按下启动键,计时继续进行。 5. 音响报警将在倒计时最后一分钟响起,提醒发言者时间接近。 6. 计时结束后,将持续鸣叫的长音提示,此时需及时停止发言。 以上步骤完成
2025-06-03 16:19:59 7.37MB fpga vhdl 实验项目
1
标题"IIC_RX.rar"指的是一个与IIC(Inter-Integrated Circuit)通信协议相关的项目,主要关注接收端的实现。在微控制器或FPGA(Field-Programmable Gate Array)领域,MicroBlaze是一种软核处理器,它可以在Xilinx的Vivado设计套件中进行配置和集成。Vivado是一款强大的工具,用于开发基于Xilinx FPGA和SoC(System on Chip)的设计。 描述提到"实现microblaze slave中断接收",这意味着项目的目标是构建一个MicroBlaze系统,该系统作为一个IIC总线上的从设备,能够响应主设备发起的中断请求。IIC协议允许设备之间通过两根线(SCL时钟线和SDA数据线)进行双向通信。在这个实现中,MicroBlaze被配置为只能接收数据,不能发送,因为描述中提到"master不能读取,因为没做读取的程序"。这意味着代码或硬件配置仅支持中断触发的数据接收,不支持主动向主设备回送数据。 在IIC通信中,中断功能对于实时系统尤为重要,因为它允许从设备在有新数据或特定事件发生时通知主设备。在这个案例中,可能的用途是,例如,一个传感器节点将数据传输到主控制器,但只有在数据准备好时才通知主控制器,节省了总线带宽和功耗。 "最大接收25个字节"这一限制意味着从设备设计了一个接收缓冲区,最多能容纳25个字节的数据。这是常见的做法,因为IIC通信通常需要一次性传输的数据量不大,而且固定大小的缓冲区可以简化处理逻辑。 为了实现这个功能,设计者可能需要编写MicroBlaze的中断处理程序,这部分程序会在中断触发时运行,处理接收到的数据,并可能更新一些状态寄存器或者将数据存储到内存中。此外,还需要在Vivado中配置硬件描述语言(如Verilog或VHDL)的IIC接口,以实现从设备的中断逻辑。这包括正确设置IIC总线的信号,如START、STOP、ACK和NACK,以及配置中断引脚的连接。 压缩包中的"IIC_RX"可能是实现这个功能的相关源代码、配置文件或文档。可能包含的内容有: 1. VHDL或Verilog源代码:实现IIC从设备接口的硬件描述。 2. MicroBlaze中断控制器的配置文件:定义中断服务例程和中断向量表。 3. C或C++应用程序代码:处理中断事件并管理接收缓冲区。 4. Vivado工程文件:包含了整个设计的配置和约束。 5. 测试平台或测试用例:用于验证IIC从设备中断接收功能的正确性。 这个项目展示了如何利用MicroBlaze处理器和Vivado工具来实现一个定制的IIC从设备,该设备具有中断驱动的接收能力,适用于有限数据传输场景。设计者需要深入理解IIC协议、MicroBlaze架构以及Vivado的使用,以确保项目的成功实现。
2025-06-03 07:02:17 36.22MB IIC MICROBLAZE VIVADO
1