我们提出了一种基于实时情绪分类系统(RECS)的Logistic回归(LR),该系统使用随机梯度下降(SGD)算法在线训练。通过使用EEG信号流在线训练模型,所提出的RECS能够实时地对情绪进行分类。为了验证RECS的性能,我们使用了DEAP数据集,这是情绪分类中使用最广泛的基准数据集。结果表明,该方法能有效地从脑电数据流中实时分类情绪,与其他离线和在线方法相比,该方法具有更好的准确性和F1评分。
1.我们开发了一个实时情绪分类系统,使用随机梯度下降(SGD)算法在线训练的逻辑回归(LR)。在我们的例子中,我们使用EEG数据作为生理数据流。EEG数据以流的形式出现,情绪状态被实时分类。
2.我们已经证明,我们提出的RECS分类器可以优于最先进的在线流媒体分类器方法;也就是说,我们考虑了五种在线分类器:霍夫丁树(HT)、自适应随机林(ARF)、动态加权集成(DWE)、加法专家集成(AEE)和霍夫丁自适应树(HAT)。我们还比较了八种离线模式的机器学习方法,包括支持向量机(SVM)、多层感知器(MLP)和决策树(DT),以及文献中的五种在线分类器(朴素贝叶斯、支持向量机、隐马尔可夫模型(