deap脑电信号数据集下载,已上传百度网盘 失效可根据联系方式进行获取
2022-04-29 09:11:43 138B DEAP 脑电信号 数据集
Deap脑电信号识别CNN-LSTM代码
2022-04-28 16:06:46 11.86MB lstm 深度学习 DEAP 脑电信号识别
1
TSception-新 这是本文中使用数据集的TSception的PyTorch实现: 丁丁,Neethu Robinson,曾秋豪,关存泰,“ TSception:从EEG捕获时间动态和空间不对称性以进行情感识别”, IEEE情感计算交易评论,可在获取。 它是一个端到端的多尺度卷积神经网络,可以从原始EEG信号中进行分类。 可以在找到TSception(IJCNN'20)的早期版本 准备python虚拟环境 请通过以下方式创建anaconda虚拟环境: $ conda create --name TSception 通过以下方式激活虚拟环境: $ conda激活TSception 通过以下方式安装要求: $ pip3 install -r requirements.txt 运行代码 请下载DEAP数据集。 请将“ data_preprocessed_python”文件夹放置
2022-04-19 15:20:07 21KB Python
1
数据包络分析软件deap,免费下载,简单易学。在win8下有时无法得出结果,不知为何
2022-04-15 10:36:07 569KB dea 软件 免费 下载
1
本文提出了一种新的情绪识别模型,该模型以脑图为输入,以唤醒和效价为输出提供情绪状态。脑图是从脑电信号中提取的特征的空间表示。该模型被称为多任务卷积神经网络(MT-CNN),使用微分熵(DE)和功率谱密度(PSD),并考虑0.5s的观察窗口,由四种不同频段的不同波(α、β、γ和θ)的叠加脑图构成。该模型在DEAP数据集上进行训练和测试,DEAP数据集是一个用于比较的著名数据集。该模型的准确度在价态维度上为96.28%,在唤醒维度方面,获得了96.62%的准确率,这项工作表明,MT-CNN的性能优于其他方法。 模型为二维卷积神经网络。该模型的输入是一个脑图,它是EEG信号的空间谱表示。该模型由四个二维卷积层、一个完全连接层以及上述每个层之后的dropout和批量归一化层组成。最后,输出到两个流:前者用于分类受试者的配价水平,后者用于唤醒水平。ReLU用作激活功能。分类层使用一个sigmoidal函数来获得类似概率的输出。对模型进行了收敛性训练。
基于DEAP的脑电情绪识别(基于CNN的多目标进化算法选择的人类情绪与脑电图通道的二维区分),采用的tensorflow框架,模型为深度卷积神经网络模型
2022-04-08 17:06:47 11KB tensorflow cnn 算法 深度学习
在本文中,我们提出了一个双重模型,考虑了脑电特征图的两种不同表示:1)基于序列的脑电频带功率表示,2)基于图像的特征向量表示。我们还提出了一种基于图像模型显著性分析的信息组合方法,以促进两个模型部分的联合学习。该模型已在四个公开可用的数据集上进行了评估:SEED-IV、SEED、DEAP和MPED。 在本文中,我们提出了一个新的框架,旨在估计情绪的脑电图。该模型由一种双重方法组成,该方法通过层次RNN考虑脑电通道之间的空间关系,通过CNN考虑DL表示。所提出的方法在三个数据集上显示了很好的结果。
2022-04-08 17:06:39 9.45MB cnn rnn 神经网络 深度学习
在本文中,我们提出了一种多尺度卷积神经网络TSception,用于从脑电图(EEG)中学习时域特征和空间不对称性。TSception由动态时间层、非对称空间层和高层融合层组成,这些层同时学习时间和通道维度上的区别表示。动态时间层由多尺度一维卷积核组成,其长度与脑电信号的采样率有关,学习脑电的动态时间和频率表示。非对称空间层利用情绪反应背后的非对称神经激活,学习辨别性的全局和半球表征。学习到的空间表示将通过高级融合层进行融合。使用更广义的交叉验证设置,在两个公开可用的数据集DEAP和MAHNOB-HCI上对所提出的方法进行了评估。该网络的性能与之前报道的方法进行了比较,如SVM、KNN、FBFgMDM、FBTSC、无监督学习、DeepConvNet、ShallowConvNet和EEGNet。在大多数实验中,与比较的方法相比,我们的方法获得了更高的分类精度和F1分数。
2022-04-08 17:06:37 8.65MB cnn 分类 脑电情绪识别
我们提出了一种基于实时情绪分类系统(RECS)的Logistic回归(LR),该系统使用随机梯度下降(SGD)算法在线训练。通过使用EEG信号流在线训练模型,所提出的RECS能够实时地对情绪进行分类。为了验证RECS的性能,我们使用了DEAP数据集,这是情绪分类中使用最广泛的基准数据集。结果表明,该方法能有效地从脑电数据流中实时分类情绪,与其他离线和在线方法相比,该方法具有更好的准确性和F1评分。 1.我们开发了一个实时情绪分类系统,使用随机梯度下降(SGD)算法在线训练的逻辑回归(LR)。在我们的例子中,我们使用EEG数据作为生理数据流。EEG数据以流的形式出现,情绪状态被实时分类。 2.我们已经证明,我们提出的RECS分类器可以优于最先进的在线流媒体分类器方法;也就是说,我们考虑了五种在线分类器:霍夫丁树(HT)、自适应随机林(ARF)、动态加权集成(DWE)、加法专家集成(AEE)和霍夫丁自适应树(HAT)。我们还比较了八种离线模式的机器学习方法,包括支持向量机(SVM)、多层感知器(MLP)和决策树(DT),以及文献中的五种在线分类器(朴素贝叶斯、支持向量机、隐马尔可夫模型(
2022-04-07 17:05:50 1.28MB 脑电情绪识别 深度学习 DEAP
很少有用生成对抗网络(GAN)来进行DEAP的脑电情绪识别。重点是构建生成对抗网络(GAN)和条件生成对抗网络(CGAN)模型。采用的是Pytorch深度学习框架。