毕业设计的文献综述“Adaboost是一种自适应的boosting算法,该算法利用大量的分类能力一般的简单(弱)分类器(Basic Classifier)通过一定的方法叠加(Boost)起来,构成一个分类能力很强的强分类器(Strong Classifier)。其基本思想是:当分类器对某些样本正确分类时,则减少这些样本的权值;当错误分类时,则增加这些样本的权值,让学习算法在后续的学习中集中对比较难的训练样本进行学习,最终得到一个识别率理想的分类器。该算法的人脸检测对于单人脸正面图像的检测效果较好,误检率也比较低。然而AdaBoost算法采用顺序前进法搜索策略,尽管每次迭代选择的弱分类器是局部最优,但最终构成强分类器的弱分类器及其系数并不是最优。而且对于侧面及多人脸图像检测正确率不高。
1