来源:https://zhuanlan.zhihu.com/p/357992219
2022-12-07 18:26:52 87.33MB yolov5_obb
1
yolov5预训练权重文件
2022-11-29 11:28:44 294.51MB yolov5
1
yolox模型预训练权重
2022-11-08 09:24:36 34.39MB 模型权重
1
该资源包含: 1.yolov7的代码 2.yolov7.pt yolov7x.pt yolov7-w6.pt yolov7-e6.pt yolov7-d6.pt yolov7-e6e.pt等6个预训练权重文件
2022-11-02 19:08:29 728.8MB yolov7 预训练权重 权重 pt
mdnet_imagenet_vid.pth,可作为APFNet预训练权重
2022-10-29 22:04:59 16.91MB APFNet RGBT目标跟踪 预训练权重
1
marketduke模型预训练权重
2022-10-14 09:07:29 210.33MB 模型权重
1
YOLOv7训练自己数据集加载的预训练权重,包含yolov7_training.pt 、yolov7x_training.pt 、yolov7-w6_training.pt、 yolov7-e6_training.pt、 yolov7-d6_training.pt
2022-08-19 12:05:15 813.37MB YOLOv7预训练权重
1
Yolov5模型预训练权重---【包含yolov5s、yolov5s6、yolov5m、yolov5m6、yolov5l、yolov5l6、yolov5m、yolov5m6、yolov5x等】
2022-08-01 09:07:32 509.32MB yolov56.1 深度学习 预训练权重文件
1
pvrcnn是一个两阶段检测算法。stage1采用常规的voxel-based的方法得到proposal。stage 2:refine。经过stage1得到了RoI, 刚刚的关键点特征提取得到了每个关键点的特征。然后可以进行refine了。还有一个Predicted Keypoint Weighting模块。它的作用主要是想降低不是前景点的关键点特征对refine阶段的影响。通过训练两层MPL来使得模型能够区分哪些是前景点,哪些是背景点,并对背景点赋予较小的权重。以gird point为球心,以某一设定值为半径画球,对包括在其中的关键点再次进行set abstraction操作,得到更高级的特征。这样做有一个好处就是,在画球的过程中,有可能将RoI之外的点包括进来,从而提供更丰富的语义信息,帮助模型更好的回归。这样重复6 * 6 * 6次,就能得到6 * 6 * 6个特征向量。
2022-07-30 16:05:41 46.79MB 3D目标检测 点云检测 人工智能
1
PointRCNN源代码中的作者提及的预训练模型。[3D检测系列-PointRCNN]复现PointRCNN代码,并实现PointRCNN3D目标检测可视化,包含预训练权重下载链接(从0开始以及各种报错的解决方法)。有了该模型就无需自己在训练,可以直接用这个模型对网络进行检测和再训练。并且可以参考我的另一篇博文进行网络复现和可视化操作。利用作者的预训练模型可以直接检测,将模型放在tools下面。复现博文地址:https://blog.csdn.net/Callme_TeacherPi/article/details/125963061
2022-07-26 17:06:58 13.83MB 3D目标检测 深度学习 人工智能
1