Liberate MX for SRAM RaK教程 嵌入式静态随机存取存储器(SRAM)实例需要在自由(.lib)文件中捕获的定时、功率、引脚电容和噪声信息,以用于全芯片静态定时分析(STA)流。 随着嵌入式SRAM占用越来越大的芯片面积,准确、高效地生成.lib文件变得非常重要。 这些内存实例的大小和复杂性会使手动方法变得困难和容易出错。 解放MX的架构是为了描述嵌入式内存,如SRAM、ROM、CAM等,以实现定时、功率和噪声。 这是通过在完整的网络列表上运行一个像SpectreXPS这样的FastSPICE模拟器来识别电路活动。 然后,该工具自动为每个需要使用晶体管级遍历的特征的弧划分网络列表,拓扑独立的反馈分析锁存和触发点识别,自动探测,和时钟树识别和传播。 每个弧的分区网表,它包含的晶体管比完整的网表和相关的寄生网络更少,然后可以描述所有的旋转和负载与一个真正的香料模拟器,如幽灵APS。 在自动分区过程中使用动态模拟信息使其成为一种比其他方法更快地准确描述大型宏的首选方法。 基于仿真的方法还可以实现功率表征。 在功率表征期间,设计没有进行分区,因为它需要在整个实例上运行模拟。
2025-12-18 16:51:02 130KB
1
《使用Matlab生成韦伯分布数据并导入COMSOL中的详细脚本及解析》—— 弹性模量二维随机分布的模拟与实现,COMSOL中Weibull韦布分布的Matlab脚本生成与导入:附注释,学习二维弹性模量随机分布图解析,comsol weibull 韦伯分布 matlab生成导入comsol中 。 有具体脚本且标有注释,方便大家更好理解学习。 图为二维弹性模量随机分布。 ,comsol; weibull; 韦伯分布; matlab; 脚本; 注释; 二维弹性模量随机分布,**使用Comsol Weibull韦布分布及Matlab生成脚本的教程**
2025-12-18 09:03:01 1.56MB scss
1
内容概要:本文介绍了一种基于SOE(开关操作进化)算法的多时段随机配电网重构方法,旨在通过优化配电网的网络拓扑结构,降低网损并提高经济效益。该方法特别考虑了光伏和负荷的随机性,构建了多时段随机配电网重构模型。通过MATLAB结合CPLEX/Gurobi平台进行仿真分析,展示了该方法在处理大型网络时的高效性和准确性。文中详细介绍了SOE算法的工作原理及其在配电网重构中的应用,并通过IEEE标准算例验证了该方法的有效性。 适合人群:从事电力系统研究和技术开发的专业人士,尤其是对配电网优化感兴趣的科研人员和工程师。 使用场景及目标:适用于需要优化配电网运行效率的实际工程场景,如城市电网规划、分布式能源接入等。目标是通过科学合理的网络重构,减少电能损耗,提高供电可靠性和经济收益。 其他说明:该方法不仅在理论上有所创新,在实践中也有较高的应用价值。未来的研究将进一步探索智能化和自动化的配电网重构技术,以应对日益复杂的电力系统需求。
2025-12-11 16:45:27 926KB
1
利用Lyapunov理论研究了鲁棒H∞滤波问题。对所有的时变不确定性,设计了一个稳定的滤波器使滤波误差满足指定的H∞性能。为了简化问题的推导过程,引入了辅助系统,并给出了滤波器存在的充分且必要条件。通过矩阵变换得到了设计滤波器的LMI方法,利用LMI工具箱可以方便地得到滤波器的表达形式。最后,数值算例说明了所设计方法的有效性和可行性。
2025-12-04 11:58:49 2.96MB 自然科学 论文
1
利用COMSOL与MATLAB接口代码实现随机分布小圆柱体模型的方法。该模型支持两种模式:固定数量模式和固定孔隙率模式。通过调整关键参数如半径均值、标准差、高度均值和标准差,可以生成符合特定条件的小圆柱体阵列。文中还提供了详细的代码片段,解释了核心参数设置、坐标生成逻辑、碰撞检测机制以及COMSOL中几何创建的具体步骤。此外,针对可能的生成失败情况,给出了相应的解决方案和优化建议。 适合人群:对COMSOL和MATLAB有一定了解并希望深入研究两者结合进行复杂几何建模的研究人员和技术人员。 使用场景及目标:适用于需要构建随机分布小圆柱体模型的科研项目,特别是涉及超材料、多孔介质等领域。通过灵活调整参数,可以在不同应用场景下快速生成满足特定需求的模型。 其他说明:文中提供的代码不仅展示了如何实现随机分布小圆柱体的生成,还强调了在实际应用中的注意事项和优化技巧,有助于提高模型的准确性和实用性。
2025-12-04 10:53:33 505KB
1
内容概要:本文介绍了基于快速探索随机树(RRT)算法的自动驾驶汽车路径规划方法,重点解决在存在静态障碍物环境下实现有效避障与路径搜索的问题。该方法通过在Matlab环境中构建仿真模型,利用RRT算法的随机采样特性扩展搜索树,逐步探索可行路径,最终生成从起点到目标点的安全、连通路径。文中提供了完整的Matlab代码实现,便于读者复现和调试算法,同时展示了算法在复杂地图中的路径规划效果,突出了其在非完整约束系统中的适用性。; 适合人群:具备一定Matlab编程基础,从事自动驾驶、机器人或智能交通系统相关研究的科研人员及高校研究生。; 使用场景及目标:①学习RRT算法的基本原理及其在路径规划中的具体实现;②掌握在静态障碍物环境中进行路径搜索与避障的技术方法;③通过Matlab仿真验证算法性能,为进一步改进如RRT*等优化算法奠定基础; 阅读建议:建议结合Matlab代码逐行理解算法流程,重点关注随机采样、最近节点查找、路径扩展与碰撞检测等核心模块的实现,配合仿真结果分析算法优缺点,并尝试调整参数或引入优化策略以提升路径质量。
2025-11-23 20:04:24 15KB 路径规划 RRT算法 自动驾驶 Matlab仿真
1
内容概要:本文详细介绍了一个基于MATLAB实现的KPCA-RF混合模型项目,用于股票价格预测。项目通过核主成分分析(KPCA)对高维、非线性金融数据进行降维与特征提取,再结合随机森林(RF)回归模型进行价格预测,有效提升了模型的泛化能力与预测精度。整个项目涵盖数据采集、预处理、时序特征构建、KPCA降维、RF建模、结果评估与可视化等完整流程,并强调自动化、可复用性和模型可解释性。文中还列举了项目面临的挑战,如高维非线性数据处理、噪声干扰、时序建模等,并给出了相应的技术解决方案。 适合人群:具备一定金融知识和MATLAB编程基础的数据科学从业者、金融工程研究人员及高校研究生。 使用场景及目标:①应用于股票价格趋势预测与量化交易策略开发;②为金融领域中的高维非线性数据建模提供系统性解决方案;③支持模型可解释性需求下的智能投顾与风险管理系统构建。 阅读建议:建议读者结合MATLAB代码实践操作,重点关注KPCA参数选择、RF调优方法及特征重要性分析部分,深入理解模型在金融时序数据中的应用逻辑与优化路径。
2025-11-19 15:23:59 27KB KPCA 随机森林 股票价格预测 MATLAB
1
python脑神经医学_机器学习算法_脑电信号处理_癫痫发作预测系统_基于Fourier变换和PCA降维的EEG特征提取与多模型分类_随机森林_SVM_逻辑回归_决策树算法_蓝牙传输_STM3.zip脑神经医学_机器学习算法_脑电信号处理_癫痫发作预测系统_基于Fourier变换和PCA降维的EEG特征提取与多模型分类_随机森林_SVM_逻辑回归_决策树算法_蓝牙传输_STM3.zip 在现代医学领域,利用机器学习算法对脑电信号进行分析以预测癫痫发作的研究逐渐增多。这一研究方向旨在通过高级的数据处理技术提高预测的准确性,从而为癫痫患者提供更为及时的预警和治疗。本项目的核心技术包括Fourier变换、PCA降维、以及多种机器学习模型,如随机森林、支持向量机(SVM)、逻辑回归和决策树算法。这些技术的综合运用,旨在从复杂的脑电信号(EEG)数据中提取有价值的特征,并通过不同的分类模型进行预测。 Fourier变换是一种数学变换,用于分析不同频率成分在信号中的表现,而PCA(主成分分析)降维是一种统计方法,能够降低数据集的维度,同时保留数据最重要的特征。在本项目中,这两种技术被用来处理EEG信号,提取出对预测癫痫发作最有贡献的特征。 随机森林是一种集成学习算法,通过构建多个决策树并将它们的预测结果进行汇总来提高整体模型的预测准确度和稳定性。SVM模型则通过寻找最佳的超平面来区分不同的数据类别,适用于处理高维数据和非线性问题。逻辑回归虽然在原理上是一种回归分析方法,但在二分类问题中,它通过将线性回归的结果转换为概率值来进行预测。决策树模型则是通过一系列的问题来预测结果,它易于理解和实现,适合快速的分类预测。 上述提到的各种模型都被用于本项目中,通过并行处理和结果比较,以期达到最佳的预测效果。在实际应用中,这些模型的训练和测试可能需要大量的计算资源和时间,因此研究者常常需要优化算法以提高效率。 蓝牙传输技术在本项目中的应用,意味着预测系统可以通过无线信号将分析结果实时地发送到患者的监护设备上,如智能手机或专用的医疗设备。这样,患者或医护人员能够及时接收到癫痫发作的预警信息,从而做出快速反应。而STM3可能是指某种硬件模块或微控制器,它可能是项目中的一个关键组件,用于处理信号或将数据传输给移动设备。 整个项目的目标是通过融合先进的信号处理技术和机器学习算法,为癫痫患者提供一个便携、高效的预测系统。这样的系统能够在不影响患者日常生活的前提下,持续监控患者的EEG信号,一旦检测到异常,即刻通过蓝牙技术将警报发送至监护设备。 通过附带的说明文件和附赠资源,用户可以更深入地了解系统的使用方法、技术细节以及可能遇到的问题和解决方案。这些文档为系统的安装、配置和维护提供了宝贵的指导。 医疗技术的不断进步,尤其是结合了机器学习算法的智能医疗设备的出现,正逐步改变着疾病的诊疗模式,提升了患者的生活质量。癫痫预测系统的研发是这一趋势的缩影,它不仅促进了医学与信息科学的交叉融合,也为患者提供了更为个性化和精准的医疗服务。
2025-11-17 08:48:32 471KB python
1
内容概要:该文档是一份基于Google Earth Engine(GEE)平台的完整遥感数据分析脚本,旨在通过多源遥感数据(Sentinel-2光学影像、Sentinel-1 SAR数据、Copernicus DEM地形数据、GEDI激光雷达生物量与树冠高度产品)估算越南嘉莱省(Gia Lai)的地上生物量(AGB)。脚本系统地实现了数据预处理、特征提取、随机森林回归模型构建与验证、生物量空间制图及总量估算,并进一步评估了各预测变量的重要性,最后将结果导出为资产和CSV报告。整个流程涵盖了从原始数据清洗、云掩膜、指数计算、投影统一、重采样到建模分析与结果可视化的全过程。; 适合人群:具备一定遥感与地理信息系统(GIS)基础,熟悉Google Earth Engine平台操作,从事生态环境、林业碳汇或定量遥感研究的科研人员或研究生。; 使用场景及目标:① 学习如何在GEE中融合多源遥感数据进行生物量反演;② 掌握机器学习(如随机森林)在遥感制图中的应用流程;③ 实现区域尺度地上生物量的空间分布制图与总量统计;④ 分析不同遥感特征对生物量估算的贡献度。; 阅读建议:此资源以实际可运行的JavaScript代码形式呈现,建议结合GEE代码编辑器逐步执行并理解每一步的数据流与参数设置,重点关注数据预处理的一致性、模型训练样本的生成方式以及结果导出路径的配置。
2025-11-12 21:19:43 39KB Google Earth Engine Remote
1
内容概要:本文介绍了在MATLAB环境下实现基于遗传算法(GA)与随机森林(RF)相结合的光伏功率预测项目,旨在通过GA优化RF的关键超参数(如树数量、最小叶节点样本数、特征采样数等),提升预测精度与稳定性。项目采用时间感知的滚动交叉验证作为适应度评估方式,结合RMSE、MAPE及峰值误差惩罚构建业务导向的目标函数,有效应对天气突变、数据缺失等实际挑战。系统架构涵盖数据层、模型层、搜索层、评估层和服务层,支持多源数据融合(如SCADA、气象数据、卫星云图等),输出不仅包括点预测,还提供区间预测与特征重要性分析,增强模型可解释性与业务实用性。; 适合人群:具备一定MATLAB编程基础,从事新能源发电预测、电力系统调度、智能运维等相关领域的科研人员与工程技术人员,尤其适合工作1-3年希望深入理解机器学习在能源场景中应用的研发人员。; 使用场景及目标:①解决光伏功率预测中因天气突变导致的预测不稳定问题;②实现自动化超参数优化以降低人工调参成本;③构建可解释、可部署、符合电力业务需求的预测模型,服务于电网调度、电站运维与电力市场交易决策;④支持多站点批量部署与长期运维。; 阅读建议:建议结合文中提供的代码示例与模型架构图进行实践操作,重点关注适应度函数设计、时间序列交叉验证实现与并行计算配置,同时可扩展研究SHAP解释方法与模型在线更新机制。
1