旅行商问题(Travelling Salesman Problem, TSP)是一个经典的组合优化问题。在这个问题中,一个旅行商需要访问所有指定的城市,并最后返回到原始城市,但是每次只能访问一个城市,并且不能重复。目标是找到一条最短的可能路线。 这个问题是一个NP-hard问题,意味着没有已知的多项式时间算法可以解决所有实例。但是,可以使用近似算法或启发式方法来找到接近最优的解。 以下是一个简单的Python实现,使用贪婪算法来解决TSP问题: 注意:贪婪算法并不保证找到最优解,但它通常可以找到一个相对较好的解,并且运行时间相对较短。对于大型问题,可能需要使用更复杂的算法,如遗传算法、模拟退火或线性规划方法。
2024-04-16 01:08:00 1KB python
1
介绍了软计算主要成员的发展历史, 讨论了软计算的特点与分类, 分析了软计算理论研究与实际应用。 对软计算的发展趋势进行了展望, 并提出下一步的研究方向。
2024-04-11 14:47:50 224KB
1
遗传算法及基于该算法的典型问题的求解实践,包括博文涉及的所有仿真及其结果,另外为害怕乱码,还将代码复制到了txt中。
2024-04-09 15:17:00 14KB matlab 遗传算法 旅行商问题 调度问题
1
采用灰狼优化算法求解多旅行商问题
2024-02-18 18:05:11 14KB 灰狼算法 多旅行商问题
1
机组组合问题属于规划问题,即要在决策变量的可行解空间里找到一组最优解,使得目标函数尽可能取得极值。对于混合整数规划,常用的方法有分支定界法,benders分解等。CPLEX提供了快速的MIP求解方法,对于数学模型已知的问题,只需要按照程序规范在MATLAB中编写程序化模型,调用CPLEX求解器,即可进行求解。 建立含安全约束的机组最优组合(SCUC)模型如下:目标为最小化成本,包括发电带来的煤耗成本和机组启停产生的开停机成本。 约束条件包含:功率平衡约束、热备用约束、机组出力约束、机组爬坡约束、机组起停时间约束、起停费用约束、潮流安全约束。 模型简化:由上小节构建的机组组合优化模型,煤耗成本采用二次函数,当系统规模较大时(如节点数超过1000),求解起来将消耗大量时间。因此我们可以对原模型进行线性化处理。将煤耗函数分段线性化,分为m段。 校验程序的算例基于IEEE-30节点标准测试系统。系统包含30个节点,6台发电机组。要求确定系统最优机组组合,使得系统各机组总运行成本(煤耗成本+启停成本)最小化。
2024-01-19 22:34:45 211KB matlab CPLEX 机组组合 优化规划
1
通过matlab编程求解旅行商问题(TSP) 通过matlab编程求解旅行商问题(TSP) 通过matlab编程求解旅行商问题(TSP) 通过matlab编程求解旅行商问题(TSP) 通过matlab编程求解旅行商问题(TSP)
2024-01-13 18:49:01 3KB matlab 旅行商问题 TSP
1
适用于电力系统机组组合优化问题,包含MATLAB源程序代码
2024-01-12 16:42:32 2KB matlab
封装了并行机调度PMS、流水车间调度FSP、作业车间调度JSP中的启发式算法和智能群算法[遗传算法GA、粒子群算法PSO、蚁群算法ACO、禁忌搜索TS、模拟退火SA等];旅行商问题TSP优化求解算法[最近邻算法、领域搜索算法、禁忌搜索算法、Lin2-opt和3-opt算法];车辆路径问题VRP优化求解算法[节约里程法、改进式节约里程法、扫描算法Sweep]
1
1.NET下可以直接运行 2.关键代码有非常详尽的解释 3.算法代码非常简洁
2023-12-22 05:05:18 27KB 动态规划
1
以IEEE-30节点系统(6个发电机)为例,在满足各项约束的条件下,以经济性最优最小化成本为目标函数,求解系统内机组的组合结果,包括机组启停计划、各时段最优出力,以及内含的各时段的直流潮流
2023-11-22 11:12:26 313KB matlab 成本优化 IEEE30 毕业设计
1