LTC3106概述: LTC:registered:3106 是一款高度集成的超低电压降压-升压型 DC/DC 转换器,其具有专为多电源、低功率系统而优化的自动 PowerPath 管理功能。在无负载条件下,LTC3106 仅吸收 1.6μA,并可采用任一输入电源产生高达 5V 的输出电压。 如果主电源不可用,则 LTC3106 将无缝地切换至备用电源。LTC3106 可兼容可再充电电池或主电池,并能够在可使用某种剩余能量时对备用电池进行涓流充电。任选的最大功率点控制功能可确保电源与负载之间的功率传输得到优化。输出电压和备用电压 VSTORE采用数字方式进行设置,从而减少了所需的外部组件数目。零功率 “货架模式” (Shelf Mode) 可确保当备用电池被置于长时间地连接至 LTC3106 的情况下保持充电状态。 其他特点包括一个准确的接通电压、一个用于 VOUT的电源良好指示器、一个针对较低功率应用的 100mA 用户可选峰值电流限制设定值、热停机、以及用户可选的备用电源和输出电压。 LTC3106 demo 实验板展示: LTC3106 典型应用电路: 特点具集成型电源通路(PowerPathTM)管理器的双输入降压-升压 超低启动电压:850mV (起动时未采用备用电源),300mV (起动时采用了一个备用电源) 可兼容主电池或可再充电备用电池 可采用数字方式来选择的VOUT和VSTORE 最大功率点控制 超低静态电流:1.6μA 可在 VIN或 VSTORE高于、低于或等于输出的情况下提供稳定的输出 可任选的备用电池涓流充电器 “货架模式” (Shelf Mode) 提供断开功能以保持电池在货架上的寿命 突发模式 (Burst Mode:registered:) 操作 准确的 RUN 引脚门限 电源良好输出电压指示器 可选的峰值电流限值:90mA / 650mA 采用耐热性能增强型 3mm x 4mm 16 引脚 QFN 和 20 引脚 TSSOP 封装 工作参数: LTC3106DC/DC 转换器原理图+PCB截图: 说明,后缀名为.ASC文件,用PADS 软件导入打开
2021-12-17 00:56:54 6.14MB 转换器 电路方案
1
正负电压转换器电路原理图pdf,正负电压转换器电路原理图
2021-11-22 17:05:21 287KB 综合资料
1
这种小型PCB可以在任何地方使用。 U可以控制T12熨斗,U可以控制电源,U可以控制LED。 最后,您可以使用Arduino PWM在0-36 VDC范围内控制一切。 这是用于高压的正确MOSFET晶体管控制电路。 要运行该模块,您需要: 1,Arduino mosfet驱动程序2.12v 3.加载
2021-11-16 22:18:49 118KB DC 转换器 Arduino 电路方案
1
用途广泛的DC-DC转换器,在5V 2A时具有稳定的输出,可用于为arduino,raspberry pi,Jetson Nano等供电。 硬件部件: 德州仪器LMR16020× 1个 软件应用程序和在线服务: Easyeda 手动工具和制造机: 烙铁(通用) 在电动汽车中,电池组两端的电位差始终远大于控制逻辑板工作时的电压。由于需要低压电源线(通常等于5V),因此有必要使用称为“降压转换器”的特殊电子电路。通过这些装置,可以非常有效地转换电压,实际上,可以达到等于95%的η值。 LMR16020选择 在这种情况下,决定通过集成的LMR16020开发降压转换器。该集成的兴趣点如下: • 1.输入电压范围:4、3 V至60V。考虑使用标称电压为48V的电池组,降压转换器工作的电压范围适合应对电池提供的电压 • 2. 2 A连续输出电流。这样的输出电流可以同时为多个低功率设备或单个较大的设备(如Nvidia Jetson Nano)供电。 • 集成式高端Mosfet。这样可以节省PCB上的空间并避免选择合适的MOSFET来提高电路效率的问题 • 关断模式下的OQC超低40μA,电流超低1μA。集成的设计旨在在使用电池的电路中提供出色的性能。由于这些功能,还可以节省能源,延长电池寿命 • 过热,过压和短路保护。并非所有“降压转换器” IC都能保证的非常重要的方面,有可能在发生故障时保留数字逻辑电路 设计所需参数 构建降压转换器所需的参数为: • 输入电压:V_IN 48V • 输出电压:V_OUT 5.0V • 最大输出电流:I_OUT 2.0 A • I_EN 1μA • I_HY S 3.6μA • 瞬态响应0.2 A至2 A:5% • 输出电压纹波:10mV • 输入电压纹波:400 mV • 开关频率:f_SW 600 KHz 输出电压设定点 可以使用由顶部反馈电阻器R FBT和底部反馈电阻器RFBB组成的分压器,根据需要设置LMR16020交付的输出电压。与两个电阻器相关的方程式如下: RFBT =(V_OUT − 0.75)/0.75×RF BB 考虑到V_OUT电压等于5V,为R_FBT选择100kΩ的值,我们得出R_FBB约为17.65kΩ。取整,结果为17.8kΩ。 开关频率 为了计算能够设置工作频率的电阻RT的值,必须考虑以下公式: RT(kΩ)= 42904×fSW(kHz)^(− 1.088) 考虑到600 kHz的工作频率,我们得出RT值为40.72kΩ。因此,最接近理论电阻的实际电阻值为41.2kΩ。 输出电感选择 要选择电感值,必须考虑一些输入参数,但首先要获得最大电流纹波。后者越大,整个电路的效率越差。随着输入电压的增加,LMIN电感的最小值可以使用最大输入电压来计算。将KIND视为代表相对于最大输出电流的电流纹波量的系数,将其设置为令人满意的结果20%。电感值的计算继续如下: △iL = [V OUT×(V IN MAX − V_OUT)] / [V_IN_MAX×L×f_SW] L MIN =(V_IN_MAX − V_OUT)/(I×K_IND)×(V_OUT)/(V_IN_MAX×f_SW) 在这种情况下,选择以下参数进行电感计算: • V_IN_MAX:48 V • V_OUT:5.0 V • f_SW:600 kHz • K_IND:20% 获得的LMIN最小电感值为17.716μH,随后为实际实现选择22.0μH的电感。以这种方式,获得了0.400A的纹波值。 输出电容选择 当转换器处于稳定状态时,降压转换器的输出电容器负责管理输出电压纹波。输出上的这种纹波由两个基本成分组成:第一个是电感器输出上存在的纹波与电容器的等效串联电阻(ESR)相交的结果: △V OUT =△iL×ESR = K_IND×I_OUT×ESR 第二个贡献是由对电容器充电和放电的电感器的纹波引起的: △V_OUT_C =(△i_L)/(8×f_SW×C_OUT)=(种类×IOUT)/(8×f_SW×C_OUT) 由于两个组件彼此异相,因此总输出纹波较低。要计算容量的最小值,请使用以下公式,然后取两个值中的较大者: COUT> 3×(IOH-IOL)/(f_SW×V _US) COUT>(I_OH ^ 2 − I_OL ^ 2)/ [(V_OUT + V_OS)^ 2 − V_OUT ^ 2]×L 考虑以下设计参数: • 种类:20% • IOL:1.6 A • IOH:2.4 A • △V_OUT_C:10毫伏 • V_US:5%V OUT = 250 mV • V_OS:5%V OUT = 250 mV 我们得出COUT不能小于8.33μF。根据显示的最后两个方程式选择COUT得出的最大值作为最小值,我们得出该值
2021-11-16 22:13:31 155KB 降压转换器 DC-DC 电路方案
1
利用multisim7实现AD转换器设计,线路简单,仿真效果良好,能验证AD转换理论的正确性。
2021-11-04 17:49:28 11KB adc multisim7
1
本项目设计是一款12V-210W电源转换器参考设计,用于标准规格的交流/直流适配器。该电源转换器电路板通用主输入电压范围:90Vac至264Vac;频率:45Hz至65Hz;输出电压:12V(17.5A连续运行),适用于一体化系统,具有宽输入电压范围、轻负载时的极低功耗以及出色的平均效率。 其架构基于两级方法: 前端转换模式PFC前置稳压器和下游LLC谐振半桥转换器。PFC和LLC控制器集成在STCMB1组合集成电路中。通过SRK2001实现二次侧同步整流。 特点: 通用主输入电压范围:90Vac至264Vac 频率:45Hz至65Hz 输出电压:12V(17.5A连续运行) 满负载时的总体效率:90%以上,远高于ENERGY STAR:registered: 6.1限值 平均效率:90%以上,符合欧洲外部电源CoC ver. 5 Tier 2要求 符合RoHS指令 250mW功率下的效率超过60%,远高于针对家用和办公设备的EuP lot 6 Tier 2限值 空载功耗:低于90mW,远低于欧洲外部电源CoC ver. 5 Tier 2限值 电源谐波:符合EN 61000-3-2 D类和JEITA-MITI D类标准 EMI:符合EN55022B 级 安全:符合EN60950标准
2021-08-03 11:37:36 6.73MB 适配器 电源转换器 电路方案
1
Power Integrations 的参考设计30W单路输出反激式转换器电路板采用 LinkSwitch-HP 系列交流-直流转换器的 LNK6766E芯片。该设计展示了高能效通用输入90AVC-265AVC,12V 30W 功率输出的隔离式电源转换器带初级侧调节。 实物截图: 30W单路输出反激式转换器参数如截图: 使用的设备:LNK6766E(请参见 RS 123-5405 查看相似设备) 输出功率:30W (12V 2.5A) 输入电压:90AVC-265AVC 30W单路输出反激式转换器电路 PCB截图,用allegro打开:
2021-06-25 22:12:37 5.73MB 电源转换器 电路方案
1
描述 PMP20327 是一款同步 4 开关降压/升压转换器,可将 LM5175 控制器用于电子烟应用。通过在具有 0.2V 至 3.1V 偏置电压的 FB 引脚上使用修整电阻器,可在 20A 至 45A 的电流范围内选择 1V 至 10V 的输出电压。此设计还采用非同步升压稳压器 LMR62014 为在低输入电压模式下运行的 LM5175 提供偏置电压。电流模式控制器内置 LM5175 逐脉冲限流功能。此板包括使能端、同步和电源正常功能。此设计支持电阻范围在 0.1Ω 至 0.5Ω 之间的电阻加热元件,从而可支持多种 200W 运行条件。 特性 6V 至 8.6V 输入电压,提供 1V 至 10V/20A 至 45A 的输出 LM5175 升压/降压控制器可在所有运行条件下实现超过 90% 的效率 尺寸紧凑,外形纤薄,适合电子烟 解决方案尺寸:26mm x 57mm 峰值效率达 98%
2021-06-25 16:49:10 3.72MB 开源 电路方案
1
本文介绍了12V至24V的DC-DC转换器电路
2021-05-31 09:14:39 38KB 12V 24V DC-DC转换器 文章
1
描述: LDC1314 的独特感应传感能力用于实现非接触式 16 键多功能键盘。它使用标准 PCB 技术以及简单制造的组件来实现一种低成本解决方案。 特性: 采用非接触式按键,与电气/机械接触解决方案相比具有卓越的可靠性 可轻松用于实现适合恶劣环境的加固型、环境密封式键盘解决方案 支持同时按键 在不同温度下具有稳定性 可轻松扩展到较大的按键阵列 原理图/方框图:
2021-04-21 18:06:24 4.86MB 数字转换器 电路方案
1