交错并联型DC-DC变换器:三台Boost变换器电压电流双闭环控制策略研究,交错并联型DC-DC变换器的Boost变换器电压电流闭环控制策略分析,交错并联型 DC-dc变器 两台 boost 变器交错并联的电压电流闭环控制 三台 boost 变器交错并联型电压电流双闭环控制 ,交错并联型DC-DC变换器; 电压电流闭环控制; 三台boost变换器; 双闭环控制。,交错并联DC-DC变换器:双闭环控制三台Boost变换器 在电力电子领域,直流到直流(DC-DC)变换器是实现电压转换的关键技术,广泛应用于电源管理系统和电子设备中。其中,交错并联型DC-DC变换器由于其能够降低电流纹波、提高功率密度、改善动态响应等优势,成为研究的热点。本文主要探讨了交错并联型DC-DC变换器中Boost变换器的电压电流双闭环控制策略。 Boost变换器是一种升压型DC-DC变换器,广泛应用于需要提高电压的场合。在多台Boost变换器进行交错并联工作时,由于各单元在时间上错开工作,可以有效减小输入和输出电流的纹波,改善系统的稳定性和动态响应性能。为了实现这一优势,必须对每台Boost变换器的电压和电流进行精确控制。 电压电流双闭环控制策略是指在系统中同时对电压和电流两个变量进行闭环反馈控制。在Boost变换器中,电流控制环通常用于实现快速的负载变化响应,而电压控制环则负责维持输出电压的稳定。通过合理的双闭环控制策略,可以实现变换器的快速动态响应和稳定的输出电压,同时抑制各种扰动,提高变换器的整体性能。 在三台Boost变换器交错并联的配置中,控制策略的实现更为复杂。需要设计一种能够协调三台变换器工作状态的控制算法,确保在不同的负载和输入条件下,每台变换器都能高效稳定地工作。这通常涉及到复杂的控制算法设计,例如PID控制、模糊控制或者基于模型的预测控制等。 此外,对于两台Boost变换器交错并联的情况,虽然控制策略相对简单,但同样需要保证两台变换器之间的同步,以及与主控制系统的有效通信。在实际应用中,需要考虑变换器的驱动电路、控制电路以及功率元件的选择和配置。 技术分析表明,随着电力电子技术的发展,交错并联型变换器在控制策略和系统性能方面都有了显著的提升。采用先进的控制算法和功率电子元件可以进一步优化变换器的性能,例如通过数字化控制实现更精确的参数调节和故障诊断功能。 交错并联型DC-DC变换器及其双闭环控制策略的研究对于提高电源转换效率、降低纹波、增强系统稳定性和可靠性具有重要意义。随着电力电子技术的不断进步,未来交错并联型DC-DC变换器将会在工业和消费电子产品中扮演更加重要的角色。
2025-04-24 16:28:49 1022KB
1
本文讨论了基于分布式控制的DC/DC变换器并联系统自动交错方案,该方案旨在实现并联DC/DC变换器的交错运行,同时在模块数量变化时自动调整,保持交错运行状态。分布式控制能够有效提升系统的灵活性与可靠性,且不使用交错线实现交错,避免了系统风险。 我们要了解什么是DC/DC变换器。DC/DC变换器是一种电力电子设备,用于将一个直流电压转换为另一个不同水平的直流电压。这种变换器在电源管理中非常关键,广泛应用于工业自动化、通信设备、计算机以及电动汽车等领域。根据控制方式的不同,DC/DC变换器有多种类型,比如降压(BUCK)、升压(BOOST)、升降压(BUCK-BOOST)等。 并联系统指的是多个相同的电源模块并联运行,以提供更大的输出功率和更好的负载分配。并联系统的优势在于它可以提供冗余、提高系统的容错能力,并且便于系统扩展。当并联系统中的模块数量变化时,为了保证每个模块的输出电压和电流波形相互协调,减少波形干扰,就需要交错运行技术。 传统交错运行控制方案通常采用集中式控制,有一个独立的控制单元来同步各个模块的开关动作,从而减少电压和电流纹波。但是,集中式控制的缺点在于它对控制单元的可靠性要求很高,一旦控制单元出现问题,整个系统可能会失效。此外,集中式控制难以应对模块数量的变化,不便于系统的模块化设计。 相对于集中式控制方案,分布式控制方案最大的特点就是不需要交错线,各模块间无额外连接,这有利于模块化设计,从而提高了系统的灵活性和可靠性。在分布式控制中,各模块自行调整其开关频率与相位,以实现交错运行。为了实现这种控制,本文提出的方案包括了脉冲整形单元、异地时钟获取环节、锁相环电路以及PWM控制信号发生电路。 脉冲整形单元负责处理主电路反馈的信号,提取并整形出系统开关信号。异地时钟获取环节通过处理不同模块的脉冲信号来获得系统时钟,而锁相环电路则用来实现模块间时钟信号的相位同步。PWM控制信号发生电路则根据系统时钟和反馈信号,生成PWM控制信号来控制变换器的开关动作。 此外,文中还提到了实验验证。通过一个三模块并联DC/DC电源系统的实验,验证了该自动交错方案的可行性。实验结果证明,该方案确实可以实现各模块的交错运行,保持系统在模块数量变化时的稳定性和可靠性。 在电子技术领域,开发板是开发和测试电子项目的常用工具。ARM开发板是指使用ARM架构处理器的开发板。在实验中,ARM开发板可以被用来实现控制系统的设计与测试,比如控制电路的PWM信号发生电路。 总结来说,基于分布式控制的DC/DC变换器并联系统自动交错方案,通过创新的控制策略和电路设计,成功实现了无交错线的交错控制,降低了系统复杂度,提高了灵活性和可靠性。这一技术进步对于提高电力电子系统的性能和效率具有重要意义,对于构建高效、可靠和灵活的电源管理解决方案有着实际的应用价值。
2025-04-24 16:26:35 326KB
1
提出一种交错控制双Boost型变换器,其包含有2个Boost单元,对应开关管的驱动信号相位差180°。对其在1个开关周期内的6种开关模态的开关通断情况和主要电压、电流的变化情况进行了详细介绍,并对变换器的性能特点进行了深入分析。实验结果表明该变换器具有以下特点:控制简单可靠,有现成的控制芯片可用;有源和无源器件都能实现软开关,不增加开关的电流、电压应力;与传统的Boost型DC/DC变换器相比,在输入、输出条件相同的情况下,输入电感和输出电容都可以减小,这是因为其输入电感电流和输出电压纹波频率都为开关频率的2倍,达到了倍频的效果。
2025-04-22 15:57:12 965KB
1
设计要求:(禁止使用集成模块) ①输入电压:18DCV ②输出电压:5-24V连续可调  ③最大输出电流:2A(@output 18V) ④电源效率:>70% 关键字:LM317;Boost升压电路;PWM控制;可调直流稳压电源 知识点: 1. 可调直流稳压电源的工作原理与应用 可调直流稳压电源是一种提供可调输出电压的电源设备,它能根据负载需要进行电压调节,保持输出电压的稳定性。在本文中,设计了一种直流稳压电源系统,它通过先升压后稳压的方式实现功能。 2. 设计要求分析 该设计要求输入电压为18DCV,输出电压范围在5-24V之间,并能连续调节。同时,要求最大输出电流为2A,且电源效率应大于70%。为了满足这些要求,设计中不能使用集成模块。 3. Boost升压电路 Boost升压电路是用于提升电压水平的电路结构。在本设计中,使用了Boost开关电源将18V直流电压提升至30V,以满足后续电路对较高电压的需求。 4. PWM控制 PWM控制即脉冲宽度调制技术,通过调整脉冲宽度来控制功率,进而调节电压。PWM技术在本设计中被应用于控制Boost电路,以实现精确的电压提升。 5. LM317线性电源 LM317是一款广泛使用的线性稳压器,可提供正电压输出。本文中,LM317被用于将30V直流电压调整至5V至24V之间,通过调节输出分压电阻实现输出电压的连续可调。 6. 过载与过热保护 LM317还具备过载和过热保护功能,这是电源设计中十分重要的安全特性。这两个保护机制能够防止电路因过载或温度过高而损坏。 7. 系统总体设计方案 系统设计方案包括方案论证、系统总体设计说明以及工作原理的详细阐述。这涉及对电路的结构设计,例如,首先利用Boost升压电路进行电压提升,随后通过LM317实现稳定输出电压的调整。 8. 系统测试与制造 设计的系统需要经过制造和硬件测试两个环节,确保系统按照设计要求工作。这涉及到电路板的制造过程以及对系统性能的测试验证。 9. PWM芯片与推挽电路 PWM芯片在本设计中用于控制Boost升压电路,实现精准的脉冲控制。推挽电路作为功率输出的一部分,提供给负载稳定的直流电压。 知识点总结: 本文介绍了一种可调直流稳压电源的设计方案,详细阐述了如何通过Boost升压电路和LM317线性电源实现特定范围内的可调直流电压输出。设计中包含了PWM控制以实现电压的精确调节,并考虑到了电路的安全保护。系统设计方案通过理论分析和硬件测试,确保设计目标的实现,同时也为相关领域的研究人员和工程师提供了设计直流稳压电源时的参考。
2025-04-21 22:07:16 873KB 课程设计 直流稳压电源
1
基于Matlab Simulink的DC-DC电路Buck-Boost转换器设计:fs=20kHz,电感电容参数优化,小信号建模与闭环控制系统仿真结果,Matlab Simulink DC-DC电路Buck与Boost转换器设计:电感电容参数优化、小信号建模与闭环控制系统仿真结果,Matlab simulinkDC DC电路buck、boost,要求fs=20kHz, 输入电压自定,输出侧接负载或电网。 基本要求: 1)设计电路电感、电容参数,要求电感电流纹波、电容电压纹波不超过±10%; 2)建立该电路的小信号模型; 3)利用波特图法设计闭环控制系统结构和参数; 4)Matlab仿真结果。 ,核心关键词:Matlab; Simulink; DC-DC电路; Buck-Boost; 参数设计; 纹波; 小信号模型; 闭环控制系统; 波特图法; 仿真结果。,Matlab Simulink DC-DC Buck-Boost电路设计与仿真
2025-04-19 13:15:50 1.46MB
1
基于MATLAB的隔离型DC DC变换器系统设计:单端反激技术指标与仿真程序整合方案,基于MATLAB仿真的单端反激隔离型DC-DC变换器系统设计与技术指标详解,基于MATLAB的单端反激——隔离型DC DC变器系统设计 本设计包括设计报告,仿真程序。 技术指标 输入电压、输出电压、输出功率、纹波系数、开关频率见下图 ,MATLAB; 单端反激; 隔离型DC DC变换器; 系统设计; 设计报告; 仿真程序; 技术指标; 输入电压; 输出电压; 输出功率; 纹波系数; 开关频率,MATLAB设计的隔离型DC-DC变换器系统方案
2025-03-29 19:42:50 1.49MB 数据结构
1
DC 45nm工艺库 NangateOpenCellLibrary_fast_conditional_ccs.lib
2025-03-28 22:45:57 29.24MB
1
基于MATLAB Simulink的双环控制DC DC变换器模型及性能比较分析,并附带相应结构电压电流控制的参考实验与论述。,MATLAB Simulink中两相交错并联双向DC-DC变换器:电压电流双闭环控制仿真模型研究及对比分析,MATLAB Simulink两相交错并联双向DC DC变器电压电流双闭环控制仿真模型 附参考文献 两相交错并联buck boost变器仿真 采用4mos结构,模型内包含单电压环开环控制,单电流环闭环控制(比例积分+前馈),电压电流双闭环控制(比例积分+前馈)三种控制方式,可以对比各种控制效果,三种方式中,双环控制模式的电感电流均流效果好,输出波形好,电压纹波小。 357 ,核心关键词:MATLAB; Simulink; 两相交错并联; 双向DC-DC变换器; 电压电流双闭环控制; 仿真模型; 比例积分控制; 前馈控制; 均流效果; 输出波形; 电压纹波。,基于MATLAB Simulink的DC-DC变换器双环控制仿真模型对比研究
2025-03-26 23:34:35 3.31MB
1
Adobe Acrobat DC为Adobe出品的PDF查看和编辑软件,下文简称Adobe DC,该软件功能强大,拥有查看PDF、编辑PDF、打印PSD、导出PDF、合并文件、组织页面、文本标注、注释、动作向导、等功能。
2025-03-26 13:58:06 606.31MB
1
双有源桥DAB DC-DC变器负载电流前馈控制。 以SPS单移相为例。 相比传统电压闭环控制,改善电路对负载变化的动态性能,缩短调节时间,降低超调。 为便于对比,两组控制下pi参数设为一致。 matlab simulink plecs等环境
2024-12-17 05:15:50 208KB matlab
1