贷款违约预测竞赛数据,是个人的金融交易数据,已经通过了标准化、匿名处理。包括200000样本的800个属性变量,每个样本之间互相独立。每个样本被标注为违约或未违约,如果是违约则同时标注损失,损失在0-100之间,意味着贷款的损失率。未违约的损失率为0,通过样本的属性变量值对个人贷款的违约损失进行预测建模。数据来自英国帝国理工大学。
2021-11-24 14:53:08 581.69MB 信用评分 违约损失预测
1
本项目通利用Kaggle平台predict-loan-defaulters 贷款数据,通过逻辑回归模型来对这些数据进行预测判断,构建贷款违约预测模型,建立预测模型,预测正处于贷款期间的人的违约的概率 。在贷款管理方面,如果可以通过构建量化模型对客户的信用等级进行一定的区分。得知了每个账户的违约概率后,可以预估一下未来的坏账比例,及时做好资金安排。也可以对违约概可能性较高的客户进行更加频繁的“关怀”,及时发现问题,以避免损失。 在这个量化模型中,被解释变量为二分类变量,因此需要构建一个排序类分类模型。而排序类分类模型中常使用的算法是逻辑回归。
1
基于LightGBM的网络贷款违约预测模型,人工智能预测违约
2021-11-05 10:49:09 5.11MB LightGBM 预测模型
1
赛题信息:车贷资产由于进入门槛低、借款额度低、流动性高、限期短等优点,但做好风险防控依然是行业的主要问题之一。国内某贷款机构就面临了这样的难题,该机构的借款人往往拖欠还款或拒不还款,导致该机构的不良贷款率居高不下。 数据是真实数据脱敏上传因此有很强的代表性,非常适合练手。 本次比赛的评估指标是F1,也是相当的有代表性
2021-10-14 14:04:43 10.04MB 数据分析
UCI Statlog (German Credit Data) 原始数据集
1
https://www.kaggle.com/c/loan-default-prediction
2021-09-22 18:18:45 183.41MB Kaggle creditcard 训练集
1
贷款违约预测竞赛数据【Kaggle竞赛】.zip
2021-04-26 10:00:22 581.52MB 贷款违约预测竞赛数据 Kaggle竞赛
1