SAR成像的位置误差校正。使用OMP恢复场景,使用梯度下降法修正误差。代码运行速度快,300秒左右。
2021-06-16 17:10:23 11KB SAR 误差校正
1
准确的风电功率预测对于电力系统安全稳定运行具有重要意义,滞后性是产生风电功率预测误差的主要原因,尤其是风速变化较快时,滞后性引起的预测误差较大。考虑到风速波动与风电功率的变化息息相关,提出一种基于风速局部爬坡(LR)误差校正的方法来改善预测风速的滞后性,并将校正后的预测风速及历史功率数据作为输入进行风电功率预测。提出利用灰狼优化(GWO)算法对最小二乘支持向量机(LSSVM)的参数进行优化,以提高风电功率预测的准确性。算例结果表明,所提方法能够有效提高风电功率预测精度。
1