利用Top-Push的方法,实现了行人重识别,参考文献Top-push Video-based PersonRe-identification,实现加密部分代码。
2022-05-11 14:26:35 8.78MB 机器学习 行人重识别
1
基于多特征子空间与核学习的行人再识别
2022-05-08 19:05:28 2.2MB 综合资源
行人重识别数据集,RegDB和SYSU-MM01
2022-04-11 16:08:50 325.86MB 数据集
1
行人重识别课程主要包括三大核心模块:1.2020经典算法(论文)详细解读;2.项目源码分析;3.实战应用;通俗讲解CVPR等会议最新行人重识别方向算法及其实现,基于PyTorch框架展开实战,逐行讲解全部项目源码及其应用实例。整体风格通俗易懂,用最接地气的方式带领同学们掌握最新行人重识别算法并进行项目实战。
1
行人再识别的主要任务是利用计算机视觉对特定行人进行跨视域匹配和检索。相比于传统算法,由数据驱 动的深度学习方法所提取的特征更能表征行人之间的区分性。
2022-02-28 12:58:23 9.55MB DL 行人再识别
1
针对现存行人重识别算法不能较好地适应光照、姿态、遮挡等变化的问题, 提出一种基于特征融合与子空间学习的行人重识别算法。该算法对整幅行人图像提取方向梯度(HOG)直方图特征和HSV(Hue,Saturation,Value)直方图特征作为整体特征, 再在滑动窗口内提取色彩命名(CN)特征和两个尺度的尺度不变局部三元模式(SILTP)特征。为了使算法具有更好的尺度不变性, 对原图像进行两次下采样, 再对采样后的图像提取上述特征。提取特征后, 采用核函数分别将原始特征空间转换到非线性空间, 在非线性空间内学习一个子空间, 同时在子空间内学习一个相似性度量函数。在3个公开数据集上进行了实验, 结果表明, 所提算法可以较好地提高重识别率。
2022-02-25 17:37:43 1.64MB 机器视觉 行人重识 特征融合 子空间
1
为解决实际行人重识别系统中识别率低、识别速度慢的问题,从创新和工程应用出发,提出了一种行人重识别算法。对行人图片进行预处理,采用色调、饱和度、亮度(hue,saturation,value,HSV)空间非线性量化的方法构建颜色命名空间,对人体分区域预识别来提高检测效率;对备选目标的整幅图像提取HSV和方向梯度直方图(histogram of oriented gradient,HOG)作为整体特征并在滑动窗口内提取颜色命名(color naming,CN)特征和2个尺度的尺度不变特征(scale invariant local pattern,SILTP),采用本文融合算法得到新的特征;在3个数据集上进行行人重识别,融合的特征在2种度量学习算法的Rank1平均提高了2.4%和3.3%。实验结果表明该算法能够提高重识别精度。
1
随着深度学习的发展,研究人员开始探索将深度学习应用于行人重识别任务并提出了大量方法,随之也迎来了新的挑战。为系统地了解这一领域的研究现状和发展趋势,首先对行人重识别任务以及存在的问题进行简单介绍;其次,根据训练方式的不同,分别探讨监督学习、半监督学习/弱监督学习以及无监督学习上行人重识别任务的研究进展,并根据现有研究热度介绍生成对抗网络和注意力机制在行人重识别上的应用;之后,列举了该领域中常用的经典数据集,并对比了深度模型在这些经典数据集(Market-1501、CUHK03等)上的表现;最后,对行人重识别领域的未来方向进行了展望。
2022-01-07 15:26:39 1.8MB 行人重识别 监督学习 半监督学习
1
今天给大家带来,深度学习,行人重识别re-id,多任务学习.pptx,面对于相关知识讲解的十分清楚明白,相关方向的同学不要错过,一起来学习吧!
2021-12-06 14:44:24 45.89MB 深度学习 行人从识别 re-id
1
它是从两个对齐的摄像头(一个可见,一个远红外)收集的。总共有412人。每个人有10个可见光图像和10个远红外图像。
2021-12-04 17:28:38 66.56MB 跨模态重识别 RegDB ReID
1