基于特征融合与子空间学习的行人重识别算法

上传者: 38557370 | 上传时间: 2022-02-25 17:37:43 | 文件大小: 1.64MB | 文件类型: -
针对现存行人重识别算法不能较好地适应光照、姿态、遮挡等变化的问题, 提出一种基于特征融合与子空间学习的行人重识别算法。该算法对整幅行人图像提取方向梯度(HOG)直方图特征和HSV(Hue,Saturation,Value)直方图特征作为整体特征, 再在滑动窗口内提取色彩命名(CN)特征和两个尺度的尺度不变局部三元模式(SILTP)特征。为了使算法具有更好的尺度不变性, 对原图像进行两次下采样, 再对采样后的图像提取上述特征。提取特征后, 采用核函数分别将原始特征空间转换到非线性空间, 在非线性空间内学习一个子空间, 同时在子空间内学习一个相似性度量函数。在3个公开数据集上进行了实验, 结果表明, 所提算法可以较好地提高重识别率。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明