数据融合matlab代码基于多视图深度学习的基于表面肌电图的手势识别 此回购包含我们关于sEMG的最新论文的代码:魏文涛,戴庆峰,黄永康,余杜,坎坎哈利,耿卫东。” 要求 CUDA兼容GPU Ubuntu> = 14.04或任何其他可以运行DockerLinux / Unix 用法 拉泊坞窗图片 我们已将docker映像上传到。 您可以使用命令行来提取docker映像,如下所示: docker pull zjucapg/semg:latest 使用下面的命令行进入Docker容器 nvidia-docker run -ti -v your_prodjectdir:/code your_featuredir:/feature your_imudir:/imu zjucapg/semg /bin/bash 数据集 本文使用的原始数据集包括11个类别,包括( DB1-DB7 )和( 10mov4chUntargetedForearm,6mov8chUFS,10mov4chUF_AFEs,8mov16chLowerLimb )。 在这项工作中,sEMG的手工功能被用作多视图深度学习的不同视图。
2021-07-21 16:11:48 207KB 系统开源
1
肌读数据集 腕部冬眠,弯曲,伸展,径向偏移,尺骨偏移,内旋,旋后和拳头手势的Myo臂章肌电图读数数据集。 项目结构 读数位于_readings文件夹中,每个记录会话包含一个文件夹。 每个会话文件夹包含多个文件,每个手腕手势一个。 这些文件名为 .txt(例如,扩展名为2.txt,请参见下面的手势标签)。 每个录制会话文件夹应至少包含八个文件(用于手势0-7)。 文件本身由多行组成: ... 11,32,-3,-43,4,5,42,7,0 13,24,-5,12,43,42,12,1,0 123,121,-100,-88,-32,32,123,13,2 ... 每行代表来自Myo臂章上的八个EMG通道的样本([-128,127],有符号字节),以及给定时刻的手腕手势(类)标签,以逗号分隔。 该行的末尾没有逗号,并且文件中的任何地方都不应有空格。 根据Myo规范,采样频率约为2
2021-04-06 15:25:19 8.56MB dataset myo emg myo-armband
1