本文采用因子分析,聚类分析,判别分析等方法对半导体行业进行多元统计分析,并从企业财务指标对企业绩效进行评估。 KMO检验和Bartlett检验表明,半导体行业的财务数据非常适合因子分析。 通过因子分析和聚类分析,最终将71家半导体公司按照偿付能力,盈利能力,运营能力和成长能力分为四类,为投资者提供参考。
1
NTsys-pc2.01图解使用说明1数据的录入方法:1)利用Ntedit直接录入数据 0、1二元数据中的数据缺失记为2。其中列标可以写为样品编号(条带编号),在No.rows 栏中写入0、1数据总数,No.cols 栏中写入样品总数。文件另存为*.nts格式。 2)从excel表中直接读入数据 Excel表中输入数据格式如下图。A1必须为1,B1为0、1数据总数,C1为样品总数
2023-04-13 21:35:38 3.93MB 遗传距离 聚类分析 主成份分析
1
对传统的K-平均算法作了简单的介绍和讨论,提出了一种具有单纯型法思想的K-中心点轮换法。分别对比了K-均值算法与K-中心点轮换算法的时间复杂度,针对K-中心点轮换算法的时间复杂度提出了一种基于抽样原理的改进算法,并对K-中心点轮换算法聚类数目的选择进行了各种改进方法的探索。同时,基于主流的weka开源数据挖掘工具实现了改进算法。实验结果表明了算法的有效性。
2023-03-10 15:57:00 277KB 软件
1
资源给大家带来一个利用卷积神经网络(pytorch版)实现空气质量的识别分类与预测。 我们知道雾霾天气是一种大气污染状态,PM2.5被认为是造成雾霾天气的“元凶”,PM2.5日均值越小,空气质量越好. 空气质量评价的主要污染物为细颗粒物(PM2.5)、可吸入颗粒物(PM10)、二氧化硫(SO2)、二氧化氮(NO2)、臭氧(O3)、一氧化碳(CO)等六项。
1
针对传统WLAN指纹定位算法中存在的定位精度低、稳定性差、实时性不高等问题,提出一种基于CMAES-SVR的WLAN室内定位算法。该算法首先对接入点(AP)的接收信号强度(RSS)进行统计分析,采用高斯滤波对信号进行预处理,然后利用K-means聚类算法将原始指纹数据库中的定位区域进行聚类分块;其次采用协方差矩阵自适应进化策略(CMAES)优化支持向量回归机(SVR)参数,从而建立CMAES-SVR室内定位学习模型,通过该模型分别构建各定位子区域中RSS信号与物理位置非线性映射关系;最后判断测试点所属类簇,根据该类簇中训练好的CMAES-SVR模型进行回归预测。实验结果表明,与WKNN、传统SVR以及PSO-SVR算法相比,该算法在定位精度、稳定性以及实时性方面均有所提高。
2023-03-02 11:26:02 1.18MB 室内定位 位置指纹 聚类分析
1
SAS聚类分析
2023-02-27 15:22:55 649KB 综合资源 SAS
1
将二部图模型引入聚类集成问题中,使用二部图模型同时建模对象集和超边集,充分挖掘潜藏在对象之间的相似度信息和超边提供的属性信息.设计正则化谱聚类算法解决二部图划分问题,在低维嵌入空间运行K-means++算法划分对象集,获得最终的聚类结果.在多组基准数据集上进行实验,实验结果表明所提出方法不仅能获得优越的结果,而且具有较高的运行效率.
1
弹性网络算法是一种启发式算法,最初被提出是用来解决TSP(Traveling Salesman Problem)问题的,现如今,被广泛应用于聚类问题中,尤其对于高维空间数据聚类方面,有很大的优势。提出了一种新的自适应弹性网络算法(Adaptive Elastic Net,AEN)解决聚类问题,该算法利用弹性网络算法得到的[K]个中心点作为聚类初始中心点,并利用局部搜索择优算法在每次迭代中更新中心点。以聚类完成后每一簇的中心点到该簇元素的距离之和作为聚类质量评价标准,分别对随机生成的不同维度的50,100,300,500,1?000个数据点的数据集和UCI中多个标准数据集进行聚类,并将结果与传统聚类算法的聚类结果进行比较。实验表明:相较于传统的聚类算法,该算法可以有效地提高聚类质量。
2023-02-02 20:02:45 920KB 论文研究
1
kmeans 分析matlab代码K均值聚类 这是K-means算法在MATLAB和Python中的简单实现 K-means 聚类是一种矢量量化方法,最初来自信号处理,在数据挖掘中流行用于聚类分析。 k-means聚类旨在将n个观测值划分为k个簇,其中每个观测值都属于具有最近均值的簇,作为簇的原型。 这导致将数据空间划分为 Voronoi 单元。 该代码实现了 K-means 算法并在一个简单的 2D 数据集上对其进行了测试。 例子 在这个例子中,我们首先从三个正态分布生成一个点数据集并标记数据集。 这个带有正确标签的数据集是我们的真实值。 然后我们重新调整标签并为新数据集运行 k-means 算法。 该算法正确地对数据集进行聚类,并估计聚类的中心。 在最后一步,我们将我们的结果与 Mathworks 实现的 k-means 的结果进行比较。 结果 我在我的机器上得到的结果如下: iteration: 1, error: 1.8122, mu1: [-0.2165 4.0360], mu2: [4.2571 0.0152], mu3: [-1.1291 -3.0925] iterati
2023-01-12 08:52:42 86KB 系统开源
1
四、最短距离聚类法 原理 最短距离聚类法,是在原来的m×m距离矩阵的非对角元素中找出 ,把分类对象Gp和Gq归并为一新类Gr,然后按计算公式 计算原来各类与新类之间的距离,这样就得到一个新的(m-1)阶的距离矩阵; 再从新的距离矩阵中选出最小者dij,把Gi和Gj归并成新类;再计算各类与新类的距离,这样一直下去,直至各分类对象被归为一类为止。 (3.4.10)
2023-01-08 23:24:15 390KB MATLAB 系统聚类分析
1