基于Maxwell Simplorer与Simulink耦合的永磁同步电机仿真模型:多控制策略与电流谐波抑制,maxwell simplorer simulink 三者耦合永磁同步电机仿真模型。 simulink 控制电路采用id=0的svpwm控制,转速环节采用PI控制。 本例采用多旋转PI控制抑制永磁同步电机5 7次电流谐波。 另外可以用自抗扰(ADRC)控制电流环采用PI控制。 同时该模型包含电流5.7次斜波补偿算法,有效的改善了三相电流波形。 附赠相关参考文献。 ,核心关键词: Maxwell; Simplorer; Simulink; 永磁同步电机仿真模型; 耦合; ID=0的SVPWM控制; PI控制; 多旋转PI控制; 电流谐波抑制; 自抗扰(ADRC)控制; 电流环PI控制; 5.7次斜波补偿算法; 参考文献。,Maxwell、Simplorer与Simulink在永磁同步电机仿真模型中的耦合应用
2026-01-04 21:07:49 1.11MB
1
"PFC-FLAC耦合模拟技术:深部应力环境下巷道与煤层开挖的精确模拟",pfc-flac 耦合代码,深部应力环境模拟,可以进行巷道、煤层开挖。 ,pfc-flac耦合; 深部应力环境模拟; 巷道开挖; 煤层开挖; 代码模拟,PFC-FLAC耦合模拟:深部应力环境下巷道、煤层开挖分析 PFC-FLAC耦合模拟技术是一种先进的数值模拟方法,主要用于岩石力学和土木工程领域,特别是在深部矿井的应力环境模拟中表现出了极高的精确性。该技术的核心在于将离散元法(PFC)与有限差分法(FLAC)相结合,从而在单个模拟过程中融合了两种不同数值模拟的优势。PFC(Particle Flow Code)适用于处理颗粒流体和固体接触问题,能够模拟微观层面的颗粒运动和变形;而FLAC(Fast Lagrangian Analysis of Continua)则擅长处理连续介质的大变形和塑性流动问题。 在深部应力环境模拟中,PFC-FLAC耦合技术能够提供一种更为全面和深入的分析方法。它不仅能够模拟出矿井深部在开挖过程中所遭遇的复杂地质条件,还能准确预测开挖面附近围岩的应力分布、变形和破坏模式。这对于巷道和煤层开挖具有重要的指导意义,能够帮助工程师更精确地设计支护方案,减少开挖过程中的风险,提高矿井的安全性与经济效益。 耦合技术的应用范围非常广泛,它可以应用于各种复杂的地下工程问题。例如,在隧道开挖、水库蓄水、油气田开发等工程中,耦合模拟能够提供地质条件下的动态响应,从而指导现场施工。在实际工程中,通过耦合模拟得到的分析结果可以用于预测围岩的稳定性,评估潜在的灾害风险,并优化开挖方案。 文件中提到的“耦合代码在深部应力环境模拟中的应用”表明了耦合模拟技术在实际工程中的具体应用方法和实践过程。文档文件提供了耦合技术在模拟中的具体应用实例,如在巷道与煤层开挖中的应用,这将有助于工程师更好地理解和掌握技术的应用要点。同时,图片文件和文本文件则可能包含了模拟结果的图形表示和详细说明,为文档提供了直观的视觉支持和数据支持。 此外,PFC-FLAC耦合模拟技术还具有良好的可扩展性和灵活性,能够与多种其他模拟技术相结合,以适应更加复杂多变的工程需求。例如,它可以与其他计算机辅助设计(CAD)软件或地质信息软件集成,使得在复杂地质条件下进行模拟成为可能。这使得PFC-FLAC耦合技术成为当前岩土工程领域不可或缺的高级工具。 PFC-FLAC耦合模拟技术在深部应力环境下的巷道与煤层开挖中扮演了重要角色。它不仅为工程师提供了精确模拟的工具,还极大地提高了工程设计的安全性和效率。通过不断的技术进步和完善,PFC-FLAC耦合模拟技术将在未来的岩土工程领域中展现出更加广泛的应用前景。
2026-01-03 11:40:56 446KB kind
1
内容概要:本文基于ANSYS APDL语言开展列车-轨道-桥梁耦合系统的有限元建模与仿真研究,重点涵盖列车系统建模(车体、转向架、车轮及二系悬挂)、钢轨(60轨与75轨)的梁单元模拟、板式与双块式无砟轨道结构的壳单元与弹簧单元建模,以及轮轨接触中赫兹接触理论、蠕滑力与轮缘力的力学行为模拟。通过该仿真方法,分析列车在不同轨道结构下的动力学响应,评估运行安全性与平稳性。 适合人群:从事轨道交通系统动力学研究、结构仿真与有限元分析的科研人员及工程技术人员,具备一定ANSYS使用基础的硕士、博士研究生。 使用场景及目标:①实现车-轨-桥耦合系统的高精度有限元建模;②研究不同轨道结构对列车运行性能的影响;③分析轮轨接触非线性力学行为,为轨道结构优化与车辆悬挂设计提供依据。 阅读建议:建议结合ANSYS APDL编程实践,深入理解各模块建模逻辑,重点关注接触算法设置、单元类型选择与边界条件处理,以提升仿真精度与工程应用价值。
2025-12-30 17:13:48 334KB
1
MATLAB仿真:基于分步傅里叶与龙格库塔方法的锁模激光器耦合非线性薛定谔方程模拟结果解析——脉冲与光谱动态演化的视觉展示,MATLAB模拟锁模激光器:分步傅里叶与龙格库塔法求解耦合非线性薛定谔方程的动态演化研究,MATLAB 锁模激光器模拟 分步傅里叶加龙格库塔求解耦合非线性薛定谔方程 模拟结果可看脉冲和光谱的动态演化 ,MATLAB; 锁模激光器模拟; 分步傅里叶; 龙格库塔; 耦合非线性薛定谔方程; 脉冲动态演化; 光谱动态演化。,MATLAB模拟锁模激光器:傅里叶-龙格库塔求解非线性薛定谔方程的脉冲与光谱动态演化
2025-12-26 20:26:57 849KB
1
基于动态博弈与人工势场法及MPC耦合的智能车换道决策与规划控制算法,基于动态博弈与人工势场法结合MPC的智能车换道决策与运动规划控制算法,基于动态博弈及人工势场法和MPC的智能车道决策和规划控制算法 基于动态博弈的道决策算法; 设计APF-MPC耦合的运动规划算法; ,基于动态博弈的换道决策算法; 人工势场法; MPC; 智能车换道决策; 规划控制算法; APF-MPC耦合的运动规划算法;,智能车决策规划算法:动态博弈与APF-MPC耦合控制策略 在现代智能交通系统中,智能车的换道决策与规划控制是确保车辆安全、高效行驶的关键技术之一。本研究聚焦于基于动态博弈理论、人工势场法与模型预测控制(MPC)耦合的智能车换道决策与规划控制算法,旨在通过这种跨学科的融合,提出更为精准和高效的换道决策模型。 动态博弈理论在智能车换道场景中主要用于模拟和分析车辆之间或车辆与环境之间的交互行为。在此背景下,智能车被视为一个理性的参与者,通过不断预测其他参与者的行动和策略,进而做出最优的决策。动态博弈模型能够提供一种框架,以预测并响应其他道路用户的潜在移动和意图。 人工势场法(Artificial Potential Field, APF)是一种常用于机器人路径规划的技术,它通过模拟物理中质点在势场中的运动规律,将复杂的避障和路径规划问题转化为势场的计算问题。在智能车换道的应用中,人工势场法可以用来描述车辆与周围障碍物之间的相互作用力,使得车辆在换道过程中能够平滑地避开障碍物,同时满足一些约束条件,如速度限制、安全距离等。 模型预测控制(Model Predictive Control, MPC)是一种先进的控制策略,尤其适用于具有复杂动态特性和多变量约束的系统。MPC在每一控制步骤中都会基于当前系统的状态和一个预测的未来模型来计算控制输入,确保系统在未来的一段时间内达到期望的行为。在智能车换道控制中,MPC能够考虑到车辆动力学、环境约束和可能的未来事件,从而做出更为精确和安全的换道动作。 本研究将动态博弈理论、人工势场法与MPC相结合,提出了一种新的智能车换道决策与运动规划控制算法。该算法的核心在于APF-MPC耦合的运动规划算法,它能够同时考虑车辆的动态特性和环境障碍物的干扰,实现换道过程中车辆的动态避障和路径优化。 具体来说,动态博弈被用来分析和预测其他道路使用者的行为,为智能车提供了一种策略性的决策依据。人工势场法则负责为智能车创建一个潜在的安全区域,使其能够在换道过程中避免与障碍物发生碰撞。同时,结合MPC算法,智能车不仅能够根据当前状态做出快速反应,还能够预测未来的状态变化,从而进行更为前瞻性的规划。 本研究还详细探讨了智能车在智能交通系统中的角色和影响。随着自动驾驶技术的发展,智能车将成为智能交通系统中的重要组成部分,而智能车换道决策与规划控制技术将成为支撑智能交通系统运行的关键技术之一。这项研究为智能车的换道技术提供了新的理论和实践指导,对提升智能交通系统的整体效能和安全具有重要意义。 在实际应用中,此类技术的开发和集成需要面对诸多挑战,如车辆动态特性的建模、环境感知的准确性、以及控制算法的实时性和鲁棒性等问题。此外,还需要考虑在不同交通场景下的普适性和适应性,以及如何与其他交通参与者(如行人、自行车等)进行交互等问题。因此,未来的研究还需要在算法的优化、实车测试以及与其他交通系统的协同等方面不断深入。 基于动态博弈与人工势场法及MPC耦合的智能车换道决策与规划控制算法,不仅提供了一种新的技术视角,而且为智能交通系统的发展贡献了新的思路和解决方案。通过这种多学科的综合应用,智能车能够在更加复杂多变的交通环境中做出更加安全和高效的换道决策,从而为未来交通的智能化和自动化奠定坚实的基础。
2025-12-23 14:44:15 304KB paas
1
COMSOL仿真模拟:电双层纳米电极扩散与双电层耦合Nernst-Planck方程及泊松方程的研究,comsol仿真模拟电双层纳米电极,扩散双电层耦合了Nernst-Planck方程和泊松方程。 ,核心关键词:Comsol仿真; 电双层纳米电极; 扩散; 双电层耦合; Nernst-Planck方程; 泊松方程;,"COMSOL模拟电双层纳米电极:扩散双电层与Nernst-Planck方程耦合分析" COMSOL仿真软件是一个强大的多物理场耦合仿真工具,它能够在统一的平台上模拟多个物理场之间的相互作用和耦合。本文主要探讨了在COMSOL仿真环境下,电双层纳米电极在扩散和双电层耦合作用下的行为,以及Nernst-Planck方程和泊松方程如何应用于分析这一现象。 电双层纳米电极是纳米技术与电化学领域中的一个重要概念,它涉及到电极表面附近的离子分布情况。在纳米电极的尺寸范围内,电荷在电极表面与电解质溶液界面产生的电双层现象尤为重要。在分析电双层现象时,Nernst-Planck方程用于描述离子在电场驱动下的扩散和迁移行为,而泊松方程则用于描述电荷分布导致的电势分布。 在COMSOL仿真中,可以利用其内置的多物理场求解器来模拟电双层纳米电极的扩散和双电层耦合问题。首先需要建立电极的几何模型,然后定义材料属性、边界条件以及初始条件。在模型中,Nernst-Planck方程被用来描述离子在电场中的扩散与迁移过程,而泊松方程则用于描述由电荷分布所产生的电势变化。通过求解这两个方程,可以得到电极附近的电势分布以及离子的浓度分布。 这种仿真模拟对于理解电极表面的化学反应、电容性质、电催化过程等具有重要意义。例如,在电化学储能设备、生物传感器和纳米电子器件的研发过程中,对电双层电极的理解有助于优化材料的选择、提高电极性能和稳定性。此外,通过仿真模拟可以快速预测不同条件下的实验结果,这比实际实验更快、更经济,有助于在早期阶段发现潜在问题。 在技术博客和文章中,这类仿真模拟分析通常被详细探讨。通过技术文章和博客,研究人员和工程师能够分享他们的仿真模拟经验,讨论各种仿真模型的建立和求解技巧,以及如何将仿真结果应用于实际问题的解决。例如,探讨仿真模拟电双层纳米电极的文章可能会涉及对电极几何结构、电解质溶液的选择、工作电位、离子浓度等因素的深入分析。 此外,本文中提到的“数据结构”标签可能指的是仿真模拟中涉及的数据组织和管理方式。在处理仿真模拟数据时,需要有效的数据结构来存储和操作仿真过程中产生的大量数据。这包括如何定义网格、记录不同时间和空间点的物理量,以及将求解结果可视化等。 COMSOL仿真模拟在电双层纳米电极研究中提供了一种强大的分析工具。通过Nernst-Planck方程和泊松方程的耦合应用,研究人员能够在原子尺度上深入理解电极表面的电化学行为,进而推动相关领域技术的发展。
2025-12-22 22:05:59 198KB 数据结构
1
Comsol模拟下的135Ah刀片电池一维电化学与三维热模型耦合分析:充放电循环过程中的温升情况研究,基于Comsol的135Ah刀片电池一维电化学与三维热模型分析:充放电循环温升特性研究,comsol,135Ah刀片电池一维电化学耦合三维热模型,充放电循环温升情况。 ,comsol; 135Ah刀片电池; 电化学耦合; 三维热模型; 充放电循环; 温升情况,《COMSOL模型分析刀片电池一维电热耦合循环温升》 在新能源领域中,电池性能的研究一直是科研和技术开发的关键点。本文集中探讨了135Ah刀片电池在充放电循环过程中的温升情况,特别是在使用Comsol软件进行模拟分析的情境下。Comsol软件作为一种多物理场耦合分析工具,能够有效地将电化学模型和热模型结合起来,模拟电池在实际工作状态下的温度变化。 在本研究中,135Ah刀片电池的电化学模型是一维的,而热模型是三维的,这种模型的耦合能够更为真实地反映电池内部电化学反应与热量分布的复杂交互作用。通过Comsol模拟,研究者能够对电池充放电过程中的温度变化进行详细的研究,分析电池在不同工作条件下的温度分布和变化趋势。这对于理解和优化电池性能,预测电池在长期工作中的热效应,以及设计有效的热管理方案具有重要的指导意义。 研究结果表明,在电池充放电循环过程中,温度的变化是电化学反应和电池内阻的函数。当电池充电或放电时,由于电化学反应的放热效应,电池内部会产生热量,导致电池温度上升。另一方面,电池内部材料的热导率、散热条件以及环境温度等因素也会影响电池的温升情况。通过Comsol模拟,可以进一步研究这些因素对电池温度变化的具体影响。 此外,研究还可能涉及到电池材料的选择和电池设计的优化。通过模拟分析可以验证不同材料和结构对电池热性能的影响,从而指导电池的设计朝着更有利于热量管理的方向发展。这包括改善电池内部的热传导路径、采用高热导率的材料、以及设计有效的冷却系统等。 研究的具体应用包括但不限于电池管理系统(BMS)的开发,通过准确预测电池在各种工况下的温升情况,BMS能够更有效地调节电池的工作状态,提高电池的安全性和使用寿命。此外,模拟结果还可以为电池的快速充电技术提供理论依据,帮助工程师设计出既能保证充电速度又能控制温度上升的充电策略。 本文的研究成果不仅对135Ah刀片电池具有重要意义,对于其他容量等级的电池研究也有一定的借鉴作用。随着新能源技术的不断发展,此类耦合模型的研究将越来越受到重视,为电池技术的进步提供强有力的理论支持和技术指导。
2025-12-19 12:05:28 351KB safari
1
comsol冻土流热耦合。 pde方程耦合,采用孔隙比模拟土柱多物理场。 ,基于Comsol模拟的冻土流热耦合效应与PDE方程多物理场孔隙比模拟研究 comsol;冻土流热耦合;pde方程;孔隙比模拟;多物理场。,COMSOL模拟多物理场下的冻土流热耦合PDE方程
2025-12-18 21:33:24 796KB
1
基于COMSOL的多物理场耦合固态锂离子电池仿真分析,COMSOL 模拟技术:深度探究固态锂离子电池的电-热-力耦合效应及扩散诱导应力分析,COMSOL 固态锂离子电池仿真 固态锂离子电池电-热-力耦合仿真,考虑了扩散诱导应力,热应力以及外部挤压应力。 ,COMSOL; 固态锂离子电池; 仿真; 电-热-力耦合仿真; 扩散诱导应力; 热应力; 外部挤压应力。,COMSOL中固态锂离子电池多物理场耦合仿真研究 COMSOL仿真软件在固态锂离子电池领域的研究应用是当前能源技术与材料科学交叉研究的热点之一。由于固态锂离子电池相比传统液态锂离子电池具有更高的能量密度、更好的安全性能以及更长的循环寿命,因此其开发与研究吸引了众多科研工作者的关注。COMSOL作为一种强大的多物理场仿真软件,能够在同一个平台上模拟多种物理现象的相互作用,使得研究人员能够深入分析固态锂离子电池在电化学反应过程中产生的温度变化、机械应力分布以及电化学性能等综合效应。 在固态锂离子电池的仿真研究中,电-热-力耦合效应是一个不可忽视的重要领域。电-热-力耦合效应指的是电池在充放电过程中电化学反应产生的热量和电流导致电池内部温度分布不均,进而引发热膨胀或收缩,产生热应力;同时,锂离子在固态电解质中的扩散会受到应力的影响,产生扩散诱导应力。这些应力与外部挤压应力共同作用于电池,可能引起电极和电解质界面的微观结构变化,进而影响电池的整体性能和寿命。 利用COMSOL软件进行固态锂离子电池的仿真分析,可以帮助研究者构建出精确的物理模型,模拟电池在不同工作条件下的性能表现。通过模拟可以预测电池的温度场、电势分布、应力应变分布等关键参数,为电池材料的选择、结构设计以及优化提供理论指导。此外,该仿真研究还能够帮助分析电池在不同充放电速率下的行为,预测热失控和机械破坏的可能性,对于电池的安全性评估具有重要意义。 在具体的研究过程中,研究者通常会通过文献调研确定固态锂离子电池的材料属性,如电导率、热导率、扩散系数、弹性模量等,并将其输入COMSOL进行仿真模拟。通过建立合理的几何模型和边界条件,结合实际的电池设计参数,研究者可以对电池进行多物理场耦合的仿真分析。例如,通过仿真研究不同充放电条件下电池内部的温度梯度变化,可以分析热应力的分布情况;通过模拟锂离子在固态电解质中的扩散过程,可以探究扩散诱导应力的作用机制。 在固态锂离子电池仿真中的应用研究,不仅需要掌握COMSOL仿真软件的使用技巧,还需要对相关的物理化学知识、电池材料学以及数值分析方法有深入的理解。通过跨学科的综合研究,可以更有效地挖掘和利用COMSOL仿真技术在固态锂离子电池开发中的巨大潜力,推动该领域技术的进步和创新。 为了实现高效的仿真分析,科研人员还可能需要借助其他辅助工具和技术,例如MATLAB、Python等编程语言用于数据处理和算法开发,以及哈希算法等数据安全技术用于仿真结果的存储和分享。哈希算法作为一种数据加密技术,确保了仿真结果在存储和传输过程中的安全性和完整性。 此外,通过观察压缩包文件名称列表中提供的文件标题,我们可以推断这些文档可能涵盖了固态锂离子电池仿真的基本原理、应用案例、理论研究以及COMSOL软件的具体操作指南。文件名称中的关键词如“应用”、“引言”、“电热力耦合效应”等,指明了文档内容的范畴,可能包含了对仿真技术在固态锂离子电池研发中应用的介绍、对该领域现有研究成果的概述以及具体的仿真实验操作步骤和分析方法等。 基于COMSOL的多物理场耦合仿真技术在固态锂离子电池的研究中扮演了至关重要的角色,为该领域的深入研究提供了有效的工具和方法。通过系统的研究和分析,能够为固态锂离子电池的性能优化和安全设计提供科学的指导,进而推动新能源技术的发展和应用。
2025-12-18 15:37:54 1.1MB 哈希算法
1
为探求应力场和渗流场耦合作用对尾矿坝稳定性的影响,采用有限元软件MIDAS,建立Mohr-Coulomb准则的分析模型.在重力作用下,分析不同干滩长度工况下应力场和渗流场的耦合作用,用强度折减有限元法分析尾矿坝稳定性.结果表明:随着干滩长度的减少,剪应变区域增大并形成贯通区,较大的剪应变出现在堆积坝靠近初期坝处,尾矿坝安全系数降低,不利于尾矿坝安全.因此,矿山企业要加强尾矿库现场管理,采用合理排渗措施,以保证尾矿坝安全运行.
2025-12-17 11:33:05 904KB MIDAS
1