给大家分享一套课程——《深度学习-图神经网络实战课》,提供全部数据与代码。 图神经⽹络模块课程旨在帮助同学们快速掌握深度学习在图模型领域算法及其应⽤项⽬。
2023-04-11 15:28:48 730B 神经网络 深度学习
1
这是总结的深度学习中常用的11个图数据集。 1. 近年来,深度学习越来越关注图方向的任务,通过利用图神经网络去挖掘现实中各种可以利用图来表示事物(社交网络,论文引用网络,分子结构)等等,来学习更好的表示,去实现下游任务。 2. 图数据是由一些点和一些线构成的,能表示一些实体之间的关系,图中的点就是实体,线就是实体间的关系。如下图,v就是顶点,e是边,u是整张图。attrinbutes(feature)是信息的意思,每个点、每条边、每个图都是有信息的。 3. 图数据集对于图任务的科研是必备的。深度学习中常用的图数据集:Cora、Citeseer(Cite)、Pubmed、DBLP、ACM、AMAP、AMAC、Corafull、WIKI、BAT、EAT、UAT。
2023-04-02 18:25:09 31.04MB 图数据集 深度学习 图神经网络
1
机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里我们将为您总结一下常见的机器学习算法,以供您在工作和学习中参考。机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法又是从其他算法中延伸出来的。这里,我们从两个方面来给大家介绍,第一个方面是学习的方式,第二个方面是算法的类似性。根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合
1
基于CNN训练的一套 "端到端" 的验证码识别模型,使用深度学习+训练数据+大量计算力,纯数字识别率高达 99.99%,数字+字母识别率 96%
1
本资源为深度学习课程设计 含课程设计完整过程的数据集以及实验报告 可供参考 由matlab代码编写构建双层CNN卷积神经网络识别Minist的手写体数据,其中将不断改进的代码跟另外使用工具函数编写的另一个CNN程序结果比较,有一个较为直观的运行效果对比。能够很好的看出程序设计的优劣。使用的是双层卷积神经网络,后向传播用的是随机梯度下降及其优化版本。 适用于CNN初学者以及希望更进一步的学习者。 dataset是MNIST。这里层的概念是指convolution+pooling 函数说明: read_label和read_image分别为读取标签和图像数据点的函数 convolve是实现卷积的函数,pool是实现池化的函数 SGD_MSGD是主函数,把minibatch设为1就是SGD,大于1就是MSGD OPTIMAL是优化版的主函数,OPTIMAL_FINALE是最终优化版的主函数,toolbox是用工具箱函数写的CNN,用于对比之前函数的运行效果。 SGD_MSGD,OPTIMAL,OPTIMAL_FINALE,toolbox都可以直接运行得到答案
1
摘要:人工神经网络作为人工智能的分支,在模式识别、分类预测等方面已成功地解决了许多现代计算机难以解决的实际问题。然而随着人工智能的发展,神经网络的自主性特征学习
1
本教程为官方授权出品 近年来,AI技术的发展日新月异,在各大互联网公司的产品竞争中,AI技术已经成为具有巨大价值的技术高地。《尚硅谷_人工智能前沿技术》是一套完整的AI入门课程,主要包括机器学习和深度学习两部分。 在本课程中,你将学到,机器学习的原理和基本知识、线性回归、logistic回归、决策树、朴素贝叶斯算法,以及深度学习的原理、tensorflow入门、卷积神经网络、循环神经网络、手写数字识别,并基于tensorflow sequence-sequence开发一个聊天机器人。
1
一维卷积神经网络,cnn,回归预测,多输入,单输出,基于matlab,替换数据和特征个数即可,拿来直接使用。分为清空环境变量、导入数据、划分训练集和测试集、数据平铺、构造网络结构、参数设置、训练模型、均方根误差、绘制网络分析图、绘图、相关指标计算等几个模块,各个模块均标有备注,直接替换数据即可使用,用于新手学习深度学习算法非常好
1
关于ppt 近年来,以机器学习、知识图谱为代表的人工智能技术逐渐变得普及。从车牌识别、人脸识别、语音识别、智能助手、推荐系统到自动驾驶,人们在日常生活中都可能有意无意地用到了人工智能技术。这些技术的背后都离不开人工智能领域研究者的长期努力。特别是最近这几年,得益于数据的增多、计算能力的增强、学习算法的成熟以及应用场景的丰富,越来越多的人开始关注这个“崭新”的研究领域:深度学习。深度学习以神经网络为主要模型,一开始用来解决机器学习中的表示学习问题。但是由于其强大的能力,深度学习越来越多地用来解决一些通用人工智能问题,比如推理、决策等。目前,深度学习技术在学术界和工业界取得了广泛的成功,受到高度重视,并掀起新一轮的人工智能热潮。
2023-01-29 17:25:07 145.68MB 神经网络 深度学习 人工智能 机器学习
1
简单,可扩展,值得继续研究的方向,可进行对比实验
2023-01-09 18:17:03 23.17MB cnn 人工智能 神经网络 深度学习
1