基于Comsol三维锂离子电池全耦合电化学-热仿真模型研究:解析充放电过程中的热效应与电性能变化,Comsol三维锂离子电池全耦合模型:精准仿真电热特性及其影响分析,Comsol三维锂离子叠片电池电化学-热全耦合模型 采用COMSOL锂离子电池模块耦合传热模块,仿真模拟锂离子电池在充放电过程中产生的欧姆热,极化热,反应热,以及所引起的电芯温度变化 ,核心关键词:Comsol; 三维锂离子叠片电池; 电化学-热全耦合模型; COMSOL锂离子电池模块; 传热模块; 欧姆热; 极化热; 反应热; 电芯温度变化。,COMSOL电池电热全耦合模型:精确模拟锂离子电池热反应过程
2025-10-26 09:33:24 1.49MB
1
图 0.2 过载影响下的速度图 提示: dcStep 要求正弦波的相位极性在 MSCNT 范围 768~255 内为正,在 256~767 内为负。余弦极性必须从 0 到 511 为正,从 512 到 1023 为负。相移 1 将干扰 dcStep 操作。因此,建议使用默认波形。请参考第 18.2 章,了解默认表的初始化。 16.4 dcStep 模式下的堵转检测 尽管 dcStep 能够在过载时使电机减速,但它不能避免在每种运行情况下出现堵转。一旦电机被堵转, 或者它减速到低于电机相关的最小速度,在该速度下,电机的运行不再能够被安全地检测到,电机可能 会堵转和失步。为了安全地检测失步并避免重新启动电机,可以使能堵转停止(设置 sg_stop )。在这种情 况下,一旦电机停止运转,VACTUAL 就会被设置为零。除非读取 RAMP_STAT 状态标志。标志位 event_stop_sg 显示停止。在 dcStep 操作期间,stallguard2 负载值也可用,范围限于 0 到 255,在某些情 况下会读出较高到 511 的值。使能 stallGuard,还应设置 TCOOLTHRS,对应的速度略高于 VDCMIN 或低于 VMAX。 当飞轮负载较松的施加到电机轴时,这种模式下的堵转检测可能由于共振而错误地触发。
2025-10-25 20:07:13 2.81MB TMC5160 步进电机驱动芯片
1
内容概要:本文探讨了锂离子电池二阶RC等效电路模型的参数辨识方法,重点介绍了递推最小二乘法的应用。文章首先概述了锂离子电池在电动汽车和可再生能源系统中的重要性,随后详细解释了二阶RC等效电路模型的组成及其在模拟电池动态行为方面的作用。接着,文章阐述了如何从可靠的数据源(如NASA)获取电流、电压和SOC数据,并在MATLAB中进行预处理。然后,详细描述了递推最小二乘法的具体步骤,展示了如何通过这种方法来估计模型的关键参数,如时间常数和欧姆内阻。最后,通过对参数辨识结果的误差分析,验证了模型的准确性和可靠性,误差控制在3%以内。 适合人群:从事电池管理、电动汽车和可再生能源系统的研究人员和技术人员,尤其是那些希望深入了解锂离子电池建模和参数辨识的人群。 使用场景及目标:① 使用MATLAB进行锂离子电池二阶RC等效电路模型的参数辨识;② 利用递推最小二乘法提高模型精度;③ 对参数辨识结果进行误差分析,确保模型的准确性和可靠性。 其他说明:文中还提供了NASA官方电池数据的下载地址及相关参考文献,为研究人员提供了丰富的数据资源和理论支持。
2025-10-24 11:40:17 1.22MB MATLAB 参数辨识
1
新能源汽车电池包热管理的关键技术和仿真流程。首先阐述了电池包热管理的基础知识,包括电芯发热机理和热管理系统的工作原理。接着重点讲述了基于StarCCM+软件的共轭传热仿真过程,涵盖三维数模的几何清理、面网格和体网格的生成、不同域耦合面的设置及关键传热系数的配置。最后讨论了学习模型的搭建,包括物理模型、数学模型和边界条件的设定,旨在为电池包热管理的设计和优化提供理论和技术支持。 适合人群:从事新能源汽车行业研发的技术人员,尤其是关注电池包热管理和仿真分析的专业人士。 使用场景及目标:适用于希望深入了解电池包热管理机制及其仿真实现的研发团队,目标是提高电池系统的稳定性和安全性,优化热管理设计。 其他说明:文中还提供了关于如何测量电芯自然对流换热系数的方法,以及电芯发热功率、OCV、DEDT的精确计算方法,有助于进一步提升仿真的准确性和实用性。
2025-10-22 13:51:53 2.11MB
1
starccm+电池包热管理-新能源汽车电池包共轭传热仿真-电池包热管理 可学习模型如何搭建,几何清理网格划分,学习重要分析参数如何设置。 内容: 0.电池包热管理基础知识讲解,电芯发热机理,电池热管理系统介绍等 1:三维数模的几何清理,电芯,导热硅胶,铜排,端板,busbar,水冷板的提取(几何拓扑关系调整),为面网格划分做准备 2.设置合适的网格尺寸,进行面网格划分 3.体网格生成:设置边界层网格、拉伸层网格、管壁薄层网格、多面体网格 4.设置不同域耦合面interface(电芯与冷板、电芯与导热硅胶、管道流体域与管道固体域、导热硅胶固体域与冷板固体域等) 5.关键传热系数的设置如接触热阻,导热率等。 (赠送实验室测电芯自然对流换热系数方法的说明ppt) 6.计算参数设置(瞬态与稳态分析对电池包仿真的适用性等) 物理模型选择,求解器参数设定。 7. 根据实际控制策略,计算电池不同工况的发热量参数 电芯发热功率,OCV,DEDT的精确计算方法 8.基于不同整车行驶工况,如爬坡、低速行驶,电池包温度场后处理分析 9.电池包热失控及热蔓延过程仿真分析 10.有一份电池包热管理仿真的核心
2025-10-22 13:46:34 487KB
1
垃圾分类作为一个全球性的问题,对于环境保护和可持续发展起着至关重要的作用。在这个数据集中,包含了4000余张图片,详细展示了四种主要垃圾类别:有害垃圾、可回收垃圾、厨余垃圾和其他垃圾。这些图片不仅涵盖了日常生活中的常见垃圾,还包括了一些不常见的项目,如小米电池,这类数据的加入极大地丰富了垃圾分类模型的训练素材,提高了模型的泛化能力。 有害垃圾通常指的是对人类健康或者环境有害的废弃物,比如废电池、过期药品、油漆桶等。这类垃圾需要特别处理,以避免对人类健康和生态系统造成危害。可回收垃圾指的是那些可以重新加工利用的废弃物,例如纸张、塑料、金属和玻璃容器等。厨余垃圾主要来自厨房,包括食物残渣、果皮、蔬菜叶等有机物。其他垃圾则是指既不属于上述类别,又不能回收利用的废弃物。 该数据集可以用于训练和测试各种机器学习模型,尤其是基于深度学习的目标检测算法,如YOLO(You Only Look Once)。YOLO算法是一种高效的目标检测方法,通过在图像中直接预测物体的类别和位置,可以快速准确地识别出图像中的垃圾种类。对于2025工程实践与创新能力大赛的参赛者来说,这个数据集是不可多得的资源,它不仅可以帮助参赛者在比赛中脱颖而出,还能在实际应用中推进垃圾分类的自动化和智能化水平。 数据集的文件结构相对简单,包含两个主要部分:labels和images。其中,images文件夹中存放了所有的图片文件,而labels文件夹则包含了与图片对应的标注文件,标注文件通常包含了垃圾的类别和边界框的坐标等信息,这些信息对于训练机器学习模型至关重要。 在处理这个数据集时,研究者需要对每张图片进行详细的标注,确保分类的准确性。对于图像中可能出现的垃圾,研究者不仅需要识别其种类,还需要精确地标注出其在图像中的位置。这样的工作不仅需要人工完成,而且需要一定的专业知识,以确保标注的准确性。完成后,这些数据可以被用来训练模型,使其能够自动识别和分类垃圾。 此外,数据集的创建和维护是一个持续的过程。随着垃圾分类标准的变化和新型垃圾的出现,数据集也需要不断更新和扩充。因此,对于那些希望在垃圾分类领域有所作为的研究者和开发者来说,这个数据集是他们宝贵的实验材料,有助于他们开发出更加高效、智能的垃圾分类系统。 这个垃圾分类数据集不仅在内容上具有多样性,涵盖了多种垃圾类型,包括一些不常见的项目,而且在应用上也非常广泛,适用于各种机器学习和深度学习的研究与实践。它为垃圾分类的自动化和智能化提供了有力的支持,对于促进环境保护、实现可持续发展具有重要的意义。
2025-10-22 10:20:24 316.39MB yolo 垃圾分类
1
内容概要:本文详细介绍了利用Simulink进行锂电池充放电控制仿真的全过程。主要内容涵盖充电和放电时采用的电压电流双闭环控制结构,以及具体的PI控制器参数设置、模式切换逻辑、DC-DC变换器控制、电池等效电路建模等方面的技术细节。文中还分享了许多实际调试过程中遇到的问题及其解决方案,如电流环和电压环的配合、代数环问题、积分项限制、采样频率优化等。最终实现了充电效率约92%,放电电压纹波控制在±1%内的良好效果。 适合人群:具有一定电力电子和控制理论基础的研发人员和技术爱好者。 使用场景及目标:适用于从事锂电池管理系统(BMS)、电动汽车、储能系统等领域工作的工程师,帮助他们理解和掌握双闭环控制的设计与调试方法,提高系统性能和稳定性。 其他说明:文中提供了大量实用的调试技巧和经验总结,对于初学者来说非常有价值。同时强调了不同应用场景下参数调整的重要性,并给出了具体的优化建议。
2025-10-22 09:06:28 1.08MB Simulink 控制系统仿真
1
利用COMSOL软件构建石墨烯/钙钛矿太阳能电池的光电耦合模型的研究。首先探讨了石墨烯和钙钛矿作为新材料在提高太阳能电池光电转换效率方面的潜力。接着,文章逐步讲解了如何在COMSOL中设置材料属性、构建三维模型以及模拟光子传播和吸收过程。最后,展示了部分代码片段和仿真分析结果,揭示了石墨烯和钙钛矿之间的相互作用及其对光电转换效率的影响。 适合人群:从事新能源研究的专业人士、高校相关专业师生、对太阳能电池感兴趣的科研工作者。 使用场景及目标:①帮助研究人员深入理解石墨烯/钙钛矿太阳能电池的工作原理;②提供模型构建的具体方法和步骤,便于实际操作;③通过仿真数据分析,指导太阳能电池的设计和优化。 其他说明:文中涉及的COMSOL代码仅为示意,具体实现时需根据实际情况调整参数和配置。
2025-10-16 19:52:21 400KB
1
利用COMSOL软件构建石墨烯/钙钛矿太阳能电池的光电耦合仿真模型。首先阐述了石墨烯和钙钛矿材料在太阳能电池领域的优势及其结合的意义。接着,重点讲解了模型的建立方法,包括材料属性设置(如介电常数、电子和空穴迁移率)和光电耦合机制的描述。文中还深入分析了代码逻辑,解释了每段代码背后的物理意义,特别是光子与电子间的相互作用过程。最后展示了仿真的结果与分析,探讨了光电耦合机制的关键参数(如光子传播路径、电势分布、电流密度),并对其未来发展进行了展望。 适合人群:从事新能源材料研究的专业人士,尤其是对石墨烯和钙钛矿材料感兴趣的科研工作者和技术爱好者。 使用场景及目标:适用于希望深入了解石墨烯/钙钛矿太阳能电池光电耦合机制的研究人员,旨在为其提供理论支持和技术指导,帮助他们掌握建模技巧并优化实验设计。 其他说明:本文不仅提供了详细的建模步骤,还强调了理解物理背景的重要性,鼓励读者在实践中不断探索和创新。
2025-10-16 19:49:43 412KB
1
石墨烯与钙钛矿太阳能电池结合使用是一种新兴的技术,旨在提升太阳能电池的性能。石墨烯作为一种具有单层碳原子紧密排列的二维材料,其独特的电子属性、机械强度和热导性使得它在光电领域的应用前景备受期待。钙钛矿太阳能电池则是近年来光电转换效率迅速提升的新型太阳能电池类型,其高吸收系数、长扩散长度以及优异的光吸收能力使其成为研究热点。 石墨烯钙钛矿太阳能电池的COMSOL仿真主要是通过建立光电热耦合模型来预测和分析电池在不同工作条件下的性能。通过仿真研究,科学家可以更加深入地理解材料和结构如何影响器件的光电转换效率以及热稳定性。在仿真中,可以模拟太阳光照射下电池表面的物理和化学过程,包括光生载流子的生成、传输、重组以及电流的形成。此外,还可以考察热效应对于电池性能的影响,比如温度升高导致的材料属性变化、热应力等因素。 在文档中提到的石墨烯与钙钛矿太阳能电池的仿真分析背景中,会详细阐述石墨烯和钙钛矿材料的基本特性、结构以及它们如何结合成太阳能电池。分析引言部分则可能概述了研究的动机、目的、重要性以及预期达到的研究成果。仿真分析的内容会涉及模型的建立、参数设定、边界条件、材料属性输入等关键步骤,确保仿真结果的准确性和可靠性。仿真结果的分析则涉及到电池性能的评估,例如光电转换效率、功率输出、温度分布等,这些数据对于优化电池设计至关重要。 此外,图像文件可能包括石墨烯材料的微观结构、钙钛矿材料的形貌、电池层叠结构的示意图以及可能的仿真模型的图形化展示。这些图像能够帮助读者直观地理解仿真过程和结果。 石墨烯钙钛矿太阳能电池的COMSOL仿真研究不仅是对未来高效能源转换器件的一种探索,而且是对于如何有效利用仿真软件解决复杂问题的一种实践。通过结合石墨烯的高导电性和钙钛矿材料的高吸收效率,以及通过仿真优化电池结构和材料属性,可以预见未来太阳能电池技术将会取得进一步的发展和突破。
2025-10-14 17:31:57 729KB
1