Amazon 无锁手机用户评论数据.zip
2021-11-01 10:41:57 34.78MB 无锁手机用户评论数据
1
Sentiment-Analysis:情感分析系统,用于分析用户评论是积极还是消极。其中使用了逻辑回归函数,决策树,支持向量机,神经网络等不同的模型进行训练
2021-10-27 20:25:38 1.1MB 系统开源
1
通过研究电影票房与社交媒体用户行为的关系,揭示在线口碑(word-of-mouth)对业绩表现的作用。与之前的研究不同,将社交媒体用户评论、用户关注等用户行为数据作为内生变量进行研究,认为用户行为既影响业绩,又被业绩影响。首先,以电影产业为研究对象,分析了每周票房与用户评论、用户评分、用户关注度等之间的关系,通过样板(Panel)数据分析,构建了电影票房预测模型。接着,将票房作为自变量,分析了作为在线口碑表现形式的用户评论、用户关注度与票房的关系。最后,分析了在线口碑自身的特点,得出了多个有意义的结论,如用户评分仅仅是票房收入的反映,其本身并不显著影响票房。本研究具有良好的理论价值和实践意义。
2021-10-22 19:01:52 379KB 社交媒体
1
爬取了360手机助手百度地图与高德地图用户评论,包括好评、中评和差评,具体方法移步:https://blog.csdn.net/qq_37089628/article/details/102567270
2021-08-24 17:27:08 368KB 用户评论爬虫 360手机助手
1
node.js脚本爬取滴滴2017年的3w条评论,后续看时间是否充足写文档公布源码,有需要私信我
2021-08-11 12:56:44 3.65MB 滴滴、评论
1
第三方库:snownlp、tushare、pandas、numpy、matplotlib getData:从东方财富网旗下的股吧论坛爬取数据 SQL:用到的数据库操作函数 quantilizeSentiment:量化情绪指数,生成excel文件便于后面进行情绪指数和股票价格涨幅相关度的量化分析(股票价格历史数据来自tusharepro网站,可以免费获取) result:传入某只股票代码,返回情绪指数结果(主要关注此文件即可,其他爬虫分析之类的我后面放到云上,爬取的数据都放入云数据库中) analyze:进行情绪指数和股票价格涨幅相关度分析、数据可视化 爬取后的数据存储在云端数据库中: db = pymysql.connect(host="116.62.46.214",user="dfcf",password="iJHPFZnRjXacNi6p",db="dfcf",port=3306) 接口说明(重点!!!): 函数: def data(share_code):#计算情绪指数 传参:share_code 股票代码(例如:zssh000001)上证指数 返回参数:result 情绪指数 例如: if __name__ == '__main__': result=data('zssh000001') #传入股票代码参数 print(result) #打印情绪指数结果 实现功能:根据传入的股票代码到东方财富网旗下的股吧对应的某股票分论坛爬取当天的用户评论信息,并将爬取的数据存储到MySQL中,之后再将数据进行统计并计算出该股票当天的市场情感趋势。 执行流程 1、输入股票代码 2、清空数据库上一天的评论信息 3、使用爬虫爬取当天东方财富网股吧论坛中该股票的股民评论信息并进行数据清洗过滤,筛选出有效信息,存入MySQL数据库 4、使用金融情感计算模型进行文本数据分析 5、得出该股票当日的情绪指数 6、返回情绪指数值 计算情绪指数具体算法实现 借助自然语言处理中的情感分类技术。按照正常的处理流程,需要搭建模型、准备语料库、训练模型、测试模型然后得到一个情感分类的模型。但这里,时间有限,所以直接使用现有的模型。snownlp是一个中文的开源的自然语言处理的Python库,可以进行分词、情感分类等。在本项目中可以直接使用它来量化出某一日市场投资者的整体情绪。量化的方法有许多种,可以将某一日所有的评论情绪得分得分相加再求评价,也可以求某一日情绪得分大于0.5的评论所占的比例。 项目所采用的方法: 将情绪得分>0.6的评论当作积极评论,小于0.4的评论当作消极评论。 设置变量neg和pos,存储某一日市场的积极情绪因子和消极情绪因子。关于neg和pos的计算方法,以neg为例: 初始化为0,若某一日的某一评论comment的情绪得分<0.4 neg=neg+1+log(该条评论的点赞数+该条评论作者的粉丝数+1,2),其中log(x,2)表示以2为低的x的对数。考虑该条评论的点赞数和该条评论作者的粉丝数是因为考虑到不同的评论的质量不同。取对数是为了让数据更加平滑,防止极值过大。+1是为了防止该条评论的点赞数和该条评论作者的粉丝数都为0。 计算某一日市场的总体情绪得分score。设计的模型是: score=log((pos/(pos+neg+0.0001)-0.5)*(该日评论总数+1)) (pos/(pos+neg+0.0001)-0.5)的意思是计算市场的情绪倾向,**大于0表明市场积极情绪情绪较强,越接近0.5越强。小于0反之。**后面的(该日评论总数+1),是因为某一日投资者的评论越多,代表市场投资者情绪的波动越大。
jQuery新浪微博用户评论表单代码是一款实用的用户评论回复交互式表单代码。
2021-06-24 21:04:26 47KB jQuery 新浪微博 表单 用户评论
1
豆瓣电影用户评论数据40万条,包括如下字段:id,time,movieId,rating,content,creator,addTime
2021-05-12 12:19:14 43.53MB 豆瓣电影 评价
1
评论数据存在稀疏问题,不足以支撑学习出更全面的用户偏好。针对评论稀疏问题进行了研究,并提出一种应对评论稀疏的即插即用辅助网络(NRSN),其能与不同的模型进行结合,以添加辅助信息的方式,来重新调整当前模型输出的用户偏好向量。首先根据目标用户,使用aspect-attention机制从其近邻用户评论中学习出近邻用户的偏好,然后采用co-attention机制将近邻用户和目标用户进行契合度匹配,调整出目标用户新的偏好向量。在三组公开数据集下的实验结果表明,NRSN不仅能提高所结合模型的推荐性能,且能有效应对“冷启动”场景下的评论稀疏问题。
2021-04-30 17:02:54 1.41MB 推荐系统 协同过滤 评论文本
1
细粒度用户评论情感分析 在线评论的细粒度情感分析对于深刻理解商家和用户,挖掘用户情感等方面有实质性的价值,并且在互联网行业有极其广泛的应用,主要用于个性化推荐,智能搜索,产品反馈,业务安全等。 依赖 Python 3.5 PyTorch 0.4 数据集 使用AI Challenger 2018的细粒度用户评论情感分析数据集,共包含6大类20个细粒度要素的情感倾向。 数据说明 数据集中的评价对象按照粒度不同划分为两个层次,层次一为粗粒度的评价对象,例如评论文本中涉及的服务,位置等要素;;层次二为细粒度的情感对象,例如“服务”属性中的“服务人员态度”,“排队等候时间”等细粒度要素。评价对象的具体
1