在盲源分离和独立成分分析中,峭度是衡量随机信号非高斯性的常用对比准则,通过不同类型的算法对其进行优化,找到非高斯性极大值点,即实现了源信号的提取或分离。例如,基于峭度的快速不动点算法,它是一种收敛速度很快的算法。最近,Marc Castella等人提出了一类基于所谓"参考信号"的对比准则,以及对应的梯度最大化优化算法,这些算法具有很好的收敛性能。受其启发,文章以一种类似的方式将"参考信号"思想应用到峭度中,得到一种新颖的对比函数,并基于该新峭度对比函数,提出了一种新的快速不动点算法。与经典的基于峭度的快速不动点算法相比,该算法极大地提高了收敛速度,尤其是随着信号样值点数的增加,该算法的优势会更加明显。文章分析和证明了该新峭度对比函数的局部收敛性,给出了新算法的详细推导过程,仿真实验验证了该算法的性能,并与经典算法进行了比较分析。
1
为更好实现对入侵检测样本数据的优化处理,提出了一种改进的快速独立成分分析(FastICA)算法,采用基于加权相关系数进行白化处理以减少信息损失,并优化牛顿迭代法使其满足三阶收敛。对算法进行了细致描述,分析了算法的时间复杂度。实验结果表明,该方法可有效减少数据信息损失,具有迭代次数少、收敛速度快等优点,可有效提高入侵检测样本数据的优化效率。
1
快速独立分量分析,适合新手练手
2021-12-16 09:09:22 846B ica独立成分分析
1
ICA独立成分分析的matlab代码,内有音频数据,以及使用说明,希望对大家有所帮助。 ICA独立成分分析的matlab代码,内有音频数据,以及使用说明,希望对大家有所帮助。
2021-12-13 15:05:30 122KB ICA 独立成分分析 matlab
1
独立成分分析在通信信号识别、还原中的简单的实际应用
2021-12-10 16:40:02 2KB matlab
1
独立成分分析》分为四个部分,共24章。第一部分(第2章至第6章)介绍了《独立成分分析》所用到的主要数学知识,第二部分(第7章至第14章)是《独立成分分析》的重点,详细讲述了基本ICA模型及其求解过程,第三部分(第15章至第20章)讨论了基本ICA模型的多种扩展形式,第四部分(第21章至第24章)对ICA方法在不同领域的应用做了生动的阐述。独立成分分析(ICA)已经成为近年来神经网络、高级统计学和信号处理等研究领域中最令人振奋的主题之一。ICA源自对客观物理世界的抽象,它能够有效地解决许多实际问题,具有强大的生命力和广阔的工程应用前景。《独立成分分析》(英文原版)是国际上第一本对ICA这门新技术进行全面介绍的综合性专著,其中还包括了为理解和使用该技术的相应数学基础背景材料。《独立成分分析》不仅介绍了ICA的基本知识与总体概况、给出了重要的求解过程及算法,而且还涵盖了图像处理、无线通信、音频信号处理以及更多其他应用。
2021-11-07 17:17:02 100.17MB 独立成分分析
1
为了探究正常人脑电β波(13~25 Hz)静息态功能连接,提出了一种结合独立成分分析(ICA)、图论、层次聚类、t检验、标准低分辨率电磁断层成像(sLORETA)技术的分析算法。对利用BP Analyzer 64导脑电仪采集的25个健康被试者在闭眼和睁眼静息状态下的高分辨率脑电信号β波(13~25 Hz)进行了功能连接研究,结果表明:(a)β波在闭眼状态下的功能连接明显多于睁眼状态;(b)从闭眼状态到睁眼状态,在右侧大脑顶叶、枕叶、颞叶区域β波功能连接明显减弱,而在双侧额叶连接增强;(c)静息态网络中的默认节点网络、视觉网络、运动感觉网络在闭眼状态下显著。因此,证明该算法适用于研究脑电β波静息态功能连接。
2021-11-02 19:58:49 1.28MB 脑电图 β波 独立成分分析 功能连接
1
论文研究-基于独立成分分析的时间序列谱聚类方法.pdf,  为了对时间序列数据进行聚类分析, 提出了一种基于独立成分分析的时间序列多路归一化割谱聚类方法, 并给出了利用独立成分分析对时间序列数据进行特征提取和降维的理论解释. 该方法首先利用独立成分分析对时间序列数据进行特征提取, 然后利用多路归一化割谱聚类方法完成对时间序列特征数据的聚类分析, 从而得到了一种新的基于特征的时间序列聚类方法. 为了验证该方法的可行性和有效性, 将其应用于仿真时间序列数据和实际的股票时间序列数据聚类分析中, 取得了较好的数值结果.
2021-10-30 11:34:50 1.97MB 论文研究
1
独立成分分析源码——FastICA——Matlab源代码
2021-10-25 17:02:38 40KB 独立成分分析
1
ICA 使用sklearn的Fast ICA实现对玻璃数据集进行独立成分分析。 ICA将产生独立的组件,例如PCA,但是这些组件不需要是正交的。
2021-10-17 16:20:50 1KB Python
1