主动形状模型(Active shape model,ASM)是一种基于统计参数化的图像特征匹配算法,它主要应用于提取图像的特征点。在分析传统方法不足的基础上,提出一种基于改进主动形状模型的图像特征匹配新算法。传统的ASM直接采样灰度值信息建立局部纹理模型,灰度值对光照、姿态等因素是非常敏感的,常会带来较大匹配误差或者导致模型匹配失败。采用基于每个像素的边缘方向和强度来代替灰度值,改进的表示方法是利用边缘方向和强度的信息去建模,并且加入了边缘结构的方向和强度。改进的表示方法增加了纹理表示的边缘特征,边缘特征
2026-01-06 17:17:11 405KB 自然科学 论文
1
内容概要:本文档提供了一个完整的机器学习工作流示例,专注于使用随机森林回归模型预测地表温度(LST)。首先,通过对数据集进行预处理,去除非特征列并进行独热编码,准备用于训练的特征和目标变量。然后,通过超参数调优或默认参数训练随机森林模型,确保模型的性能优化。接下来,评估模型性能,包括计算均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R²),并通过交叉验证进一步验证模型稳定性。此外,还提供了详细的可视化分析,如实际值与预测值对比图、残差图、特征重要性图以及预测误差分布图。最后,利用SHAP库进行解释性分析,生成SHAP值的柱状图和点图,帮助理解各个特征对模型预测的影响。 适合人群:具有一定数据分析和机器学习基础的数据科学家、研究人员和工程师,尤其是对地理信息系统(GIS)和环境科学领域感兴趣的专业人士。 使用场景及目标:①学习如何从数据预处理到模型训练、评估和解释的完整机器学习流程;②掌握随机森林模型的超参数调优方法及其在实际问题中的应用;③理解如何通过可视化工具直观展示模型性能和特征重要性;④利用SHAP值深入分析模型预测的可解释性。 阅读建议:本文档代码详尽,涵盖了从数据准备到模型评估的各个环节。读者应重点关注数据预处理步骤、模型训练中的超参数选择、评估指标的计算方法以及可视化和解释性分析部分。建议在阅读过程中动手实践代码,并结合自己的数据集进行实验,以加深理解。
2026-01-03 17:10:37 7KB Python MachineLearning DataVisualization
1
一款封闭式开发自学习杀毒引擎的开发者写的基础反病毒引擎 特征码的扫描 简单的启发式技术 核心代码开放 可以自行修改 易语言编写 引擎黑月生成 支持vb调用 支持c调用 支持c++ 效率为汇编的72% 是c的85% 是c++的97%
1
内容概要:iTwin Capture Modeler是一款用于三维数据处理和分析的软件,其2023版本引入了“提取特征”和“地面提取”两大新功能。提取特征功能利用机器学习检测器,自动从照片、点云和网格中提取信息,支持多种特征提取类型,如2D对象检测、2D分割、从2D对象检测生成3D对象、3D分割、从2D分割生成3D对象以及正射影像分割。每种类型的工作流程相似,包括启动、选择输入数据和探测器、配置设置、提交作业、查看和导出结果。地面提取功能则专注于从网格或点云中分离地面与非地面点云,支持多种输入格式,并能将结果导出为多种点云格式或进一步处理为DTM或TIN网格。整个工作流程包括选择输入数据、定义感兴趣区域、提交处理和查看结果。 适合人群:从事三维数据处理、地理信息系统(GIS)、建筑信息建模(BIM)等领域,具有一定软件操作基础的专业人士。 使用场景及目标:①从照片、点云和网格中自动提取和分类特征,提高数据处理效率;②生成精确的地面和非地面点云分割,便于后续的地形分析和建模;③通过2D和3D对象的检测和分割,为工程设计、施工管理和维护提供精准的数据支持;④将处理结果导出为多种格式,方便在不同软件环境中使用。 其他说明:iTwin Capture Modeler提供了丰富的探测器选择,用户可以根据具体需求下载和使用不同的探测器。此外,软件还支持通过ContextScene格式导入外部数据,增加了灵活性。在实际操作中,建议用户根据项目需求选择合适的输入数据和探测器,并合理配置设置以获得最佳效果。
2025-12-16 12:58:39 2.64MB 机器学习 3D建模 特征提取 点云处理
1
python安装恶意软件检测与分类_机器学习_深度学习_自然语言处理_计算机视觉_恶意软件特征提取_恶意软件分类_恶意软件识别_恶意软件分析_恶意软件检测_恶意软件防御_恶意软件对抗_恶意软件研究.zip 恶意软件检测与分类是信息安全领域的一项核心任务,随着网络技术的发展和恶意软件(又称恶意代码或恶意程序)的日益复杂,这一领域的研究显得尤为重要。恶意软件检测与分类的目的是为了能够及时发现恶意软件的存在,并将其按照特定的标准进行分类,以便采取相应的防御措施。 机器学习是实现恶意软件检测与分类的关键技术之一。通过机器学习算法,可以从大量已知的恶意软件样本中提取出特征,并训练出能够识别未知样本的模型。在机器学习的框架下,可以通过监督学习、无监督学习或半监督学习等方式对恶意软件进行分类。深度学习作为机器学习的分支,特别适用于处理大量的非结构化数据,如计算机视觉领域中提取图像特征,自然语言处理领域中处理日志文件等。 自然语言处理技术能够对恶意软件代码中的字符串、函数名等进行语义分析,帮助识别出恶意软件的特征。计算机视觉技术则可以在一些特殊情况下,例如通过分析恶意软件界面的截图来辅助分类。恶意软件特征提取是将恶意软件样本中的关键信息抽象出来,这些特征可能包括API调用序列、代码结构、行为模式等。特征提取的质量直接影响到恶意软件分类和检测的效果。 恶意软件分类是一个将恶意软件按照其功能、传播方式、攻击目标等特征进行划分的过程。分类的准确性对于后续的防御措施至关重要。恶意软件识别则是对未知文件或行为进行判断,确定其是否为恶意软件的过程。识别工作通常依赖于前面提到的特征提取和分类模型。 恶意软件分析是检测与分类的基础,包括静态分析和动态分析两种主要方法。静态分析不执行代码,而是直接检查程序的二进制文件或代码,尝试从中找到恶意特征。动态分析则是在运行环境中观察程序的行为,以此推断其是否具有恶意。 恶意软件检测是识别恶意软件并采取相应措施的实时过程。它涉及到对系统或网络中运行的软件进行监控,一旦发现异常行为或特征,立即进行标记和隔离。恶意软件防御是在检测的基础上,采取措施防止恶意软件造成的损害。这包括更新安全软件、打补丁、限制软件执行权限等。 恶意软件对抗则是在恶意软件检测与分类领域不断升级的攻防博弈中,安全研究者们所进行的工作。恶意软件编写者不断改变其代码以规避检测,而安全专家则需要不断更新检测策略和分类算法以应对新的威胁。 恶意软件研究是一个持续的过程,涉及多个学科领域和多种技术手段。随着人工智能技术的发展,特别是机器学习和深度学习的应用,恶意软件检测与分类技术也在不断进步。 恶意软件检测与分类是一个复杂且持续发展的领域,它需要多种技术手段的综合应用,包括机器学习、深度学习、自然语言处理和计算机视觉等。通过不断的研究和实践,可以提高检测的准确性,加强对恶意软件的防御能力,从而保护用户的网络安全。
2025-12-13 21:35:22 5.93MB python
1
根据深部软岩室内三轴剪切和单试件分级加载蠕变试验结果,采用岩石蠕变力学元件模型和经验本构相结合的方法,获得描述岩石非线性蠕变本构模型。利用现场实测数据对软岩巷道开挖过程进行了参数反演,获得了和试验相一致的软岩本构力学模型参数,反演结果验证了该模型的可行性。
2025-12-10 14:25:07 1.22MB 行业研究
1
COMSOL仿真模型:音叉光热致振动光源参数调整及特征频率振型分析,COMSOL仿真模型:音叉光热致振动光源参数调整及特征频率振型分析——光斑直径与位置可调频率的探索,COMSOL仿真模型音叉光热致振动光源频率、光斑直径、光斑位置可调,特征频率振型 ,COMSOL仿真模型; 音叉光热致振动; 光源频率; 光斑直径; 位置可调; 特征频率振型,COMSOL仿真模型:光热致振动音叉光源,频率可调,光斑参数灵活调整 音叉光热致振动光源是一种利用光热效应原理制造的振动光源,它能够通过特定的光斑直径和位置来调整振动频率。在COMSOL仿真模型中,可以模拟音叉光热致振动光源的工作状态,研究其频率和振型特征。通过模型仿真,可以灵活调整光源频率、光斑直径和光斑位置,进而探索这些参数对振动特性的影响。这样的仿真模型对于理解音叉光热致振动光源的工作机制,优化其性能指标具有重要意义。 仿真模型的建立,首先需要对音叉光热致振动光源的工作原理有一个清晰的认识。在实际应用中,音叉光热致振动光源通常通过激光照射产生热应力,从而引起音叉的振动。为了在COMSOL仿真模型中准确模拟这一过程,需要将音叉的物理尺寸、材料属性以及激光照射的具体参数等详细信息输入模型中。 在仿真模型中,可以通过调整激光的功率、光斑的直径和位置来改变音叉振动的频率和振型。例如,通过改变光斑直径,可以影响光热效应产生的热量分布,进而改变音叉的振动频率。光斑位置的调整也可以改变振动模式,因为不同的位置受到的热应力不同。此外,仿真模型还可以对光源频率进行精细调节,以探索不同频率下的振动特性。 通过上述参数的调整和优化,可以为音叉光热致振动光源的实际应用提供指导。例如,在精密测量和光学传感领域,通过调整光斑直径和位置,可以得到不同频率的振动信号,以适应不同的测量和传感需求。此外,光斑的精细调整还可以用于光斑位置的校准,提高光源定位的精确度。 值得注意的是,COMSOL仿真模型的建立和参数调整是一个迭代的过程,需要多次运行仿真,对比结果,逐步优化模型参数,以达到最佳的仿真效果。在这个过程中,还需要考虑实际应用中的限制因素,如音叉材料的热膨胀系数、激光的波长和功率限制等,以确保仿真结果的实用性和可靠性。 COMSOL仿真模型在音叉光热致振动光源的研究与开发中扮演着重要角色。通过对音叉光热致振动光源参数的调整和特征频率振型的分析,可以深入理解其工作原理,预测其在不同条件下的表现,并为实际应用提供科学的指导和优化方案。这项技术的研究和应用前景广泛,不仅可以用于改进现有的振动光源技术,还可能引发相关领域的新一轮技术革新。
2025-12-02 16:04:01 234KB ajax
1
ICCV论文的Matlab实现——用于鲁棒视觉目标跟踪的联合组特征选择和判别滤波器学习__Matlab implementation of ICCV2019 paper _Joint Group Feature Selection and Discriminative Filter Learning for Robust Visual Object Tracking_.zip 随着计算机视觉技术的飞速发展,视觉目标跟踪作为其中的一个重要研究领域,吸引了大量的关注。视觉目标跟踪是指在视频序列中实时地追踪特定物体的位置和运动状态。目标跟踪算法需要对目标进行准确检测,并在连续的视频帧中保持对目标的锁定,即使在物体移动、遮挡或背景变化等复杂情况下也要尽可能地减少跟踪误差。 在诸多的目标跟踪算法中,基于判别滤波器的方法因其良好的实时性和鲁棒性而备受青睐。判别滤波器通常采用特征选择的方法来提取与目标跟踪最相关的特征。然而,选择哪种特征以及如何组合这些特征对于跟踪性能的提升至关重要。 ICCV(国际计算机视觉与模式识别会议)是计算机视觉领域内一个著名的学术会议。ICCV2019上发表的这篇论文提出了一种联合组特征选择和判别滤波器学习的新方法。该方法通过学习区分目标与背景的特征,并将其用于判别滤波器的更新,从而实现更加准确和鲁棒的目标跟踪。该算法不仅提高了跟踪的准确性,同时也提高了对遮挡和快速运动等挑战性场景的适应能力。 Matlab是一种广泛应用于工程计算、数据分析、算法开发和仿真的编程语言和环境。Matlab的高级数学功能、丰富的工具箱和易于使用的可视化环境使其成为计算机视觉算法开发和测试的理想平台。在这篇论文中,研究人员利用Matlab实现了这一创新的视觉目标跟踪算法,并通过Matlab的快速原型开发特性,对算法进行了验证和展示。 为了使更多的研究者和工程师能够理解和复现这一算法,作者将论文中的算法实现了Matlab代码,并通过压缩包的形式发布。压缩包内的文件结构和代码注释的清晰程度对于其他用户学习和使用该算法至关重要。代码中可能包含多个函数和脚本,用于处理不同的跟踪阶段,如目标检测、特征提取、滤波器更新以及结果评估等。 此外,为了验证算法的有效性,作者可能还在压缩包中包含了测试数据集和相应的评估脚本。这些数据集包含了各种具有挑战性的跟踪场景,例如背景复杂、目标运动快速、存在遮挡等。通过在这些数据集上运行算法,研究者和工程师可以准确评估跟踪性能,并与其他算法进行比较。 该论文的Matlab实现不仅促进了该领域的学术交流,也加速了先进算法的工程应用。通过提供可复现的代码,研究人员可以在此基础上进行改进或将其集成到更大规模的应用中。对于视觉目标跟踪这一领域来说,这种开放和共享的精神极大地推动了整个领域的发展和进步。
2025-12-01 21:10:20 15.98MB matlab
1
目标边界约束下基于自适应形态学特征轮廓的高分辨率遥感影像建筑物提取
2025-12-01 17:16:22 768KB 研究论文
1
粒子群算法(PSO)优化BP神经网络分类预测,PSO-BP分类预测,多特征输入模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2025-12-01 14:15:26 74KB 神经网络
1