[{"title":"( 17 个子文件 425KB ) 基于时间序列预测的组合模型,CNN-LSTM-Attention、CNN-GRU-Attention的深度学习神经网络的多特征用电负荷预测 \n关于模型算法预测值和真实值对比效果如下图所示,同时利用R2","children":[{"title":"基于时间序列预测的深度学习神经网络用.txt <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false},{"title":"2.jpg <span style='color:#111;'> 109.61KB </span>","children":null,"spread":false},{"title":"基于时间序列预测的组合模型在电力.txt <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"6.jpg <span style='color:#111;'> 56.94KB </span>","children":null,"spread":false},{"title":"1.jpg <span style='color:#111;'> 107.70KB </span>","children":null,"spread":false},{"title":"标题基于时间序列预测的组合模型和在多特征用电负荷.doc <span style='color:#111;'> 2.62KB </span>","children":null,"spread":false},{"title":"基于时间序列预测的组合模型的深度学.txt <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"深度学习在电力负荷预.html <span style='color:#111;'> 13.63KB </span>","children":null,"spread":false},{"title":"基于时间序列预测的组合模型的深.html <span style='color:#111;'> 6.27KB </span>","children":null,"spread":false},{"title":"基于时间序列预测的组合模型的深.doc <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"5.jpg <span style='color:#111;'> 56.00KB </span>","children":null,"spread":false},{"title":"基于时间序列预测的深度学习神经网络用电负荷预测分.txt <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"基于时间序列预测的深度学习神经.txt <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"基于时间序列预测的深度学习神经网络.txt <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false},{"title":"3.jpg <span style='color:#111;'> 9.48KB </span>","children":null,"spread":false},{"title":"7.jpg <span style='color:#111;'> 21.60KB </span>","children":null,"spread":false},{"title":"4.jpg <span style='color:#111;'> 80.02KB </span>","children":null,"spread":false}],"spread":true}]