yolact_edge模型:yolact_edge_youtubevis_resnet50_847_50000.pth
2026-01-20 13:55:02 118.06MB 深度学习 语义分割
1
深度学习疲劳检测数据集是一种专门用于训练和测试深度学习模型以识别和评估驾驶员疲劳状态的数据集合。这种数据集对于确保交通安全和减少交通事故具有重要意义。数据集被标注为yolo格式,yolo(You Only Look Once)是一种流行的实时对象检测系统,因其速度快、准确率高而广泛应用于各种视觉检测任务中。该数据集被分为两个主要类别:疲劳和不疲劳。每一张图像都被精确标注,以便机器学习模型能够区分驾驶员是否处于疲劳状态。训练集和验证集的划分是为了使模型能够先从训练集中学习特征,然后在验证集上进行测试,以评估其泛化能力。训练集包含2793张图像,这些图像被用于模型的训练过程,使得模型能够学习到疲劳状态的特征和表现;而验证集包含1045张图像,用于在模型训练完成后评估其性能。数据集中的每一张图像都附带有对应的标注文件,这些文件以yolo格式提供,其中详细描述了图像中的疲劳特征位置,包括其在图像中的坐标位置以及类别信息。 深度学习疲劳检测数据集是机器视觉领域的重要工具,机器视觉是深度学习研究的前沿方向之一。利用深度学习进行疲劳检测是通过构建复杂的神经网络模型,来模仿人类视觉系统,使计算机能够从图像或视频中识别、处理和理解信息。数据集中的图像通过yolo格式的标注,为模型提供了必要的监督信息,使其能够自动地识别出驾驶员的疲劳状态。在交通安全领域,利用深度学习技术检测疲劳驾驶,有助于提升道路安全性,减少因疲劳驾驶造成的交通事故。 机器视觉与深度学习的结合,不仅限于疲劳检测,还包括其他许多应用,如人脸识别、自动驾驶、医疗影像分析、工业检测等。yolo格式的标注数据集为这些应用提供了高质量的训练材料,使得深度学习模型能够在各种场景下都能够实现高精度的视觉识别任务。由于yolo格式的简单性和高效性,使得它成为构建实时视觉检测系统的首选标注方式。 此外,随着深度学习技术的不断发展和优化,对于大规模高质量标注数据集的需求日益增长。一个精心设计并广泛使用的疲劳检测数据集,对于推动相关研究和应用的发展具有重要价值。未来,随着更多的数据被收集和标注,以及更先进的深度学习算法的出现,疲劳检测系统将更加精准可靠,为公共安全做出更大贡献。
2026-01-19 11:30:54 336.59MB 深度学习 机器视觉
1
本文详细介绍了如何使用YOLOv5深度学习模型训练排水管道缺陷检测数据集,包含16种缺陷类别如支管暗接、变形、沉积等,并依据CJJ181技术规程划分缺陷等级。数据集包含12,013张标注图像,采用LabelMe工具标注。文章提供了从数据准备、模型训练到可视化评估及推理的完整流程,包括环境配置、数据转换脚本示例、YOLOv5训练命令及推理步骤。此外,还介绍了如何解析推理结果和自定义代码进行推理,为排水管道缺陷检测任务提供了全面的技术指导。 深度学习技术是当前图像处理和目标检测领域的重要进展之一,特别是在工业检测中,其应用已经越来越广泛。YOLO(You Only Look Once)作为其中一种较为出色的实时目标检测系统,凭借其准确性和速度上的优势,在各类目标检测任务中备受青睐。特别是YOLOv5版本的推出,进一步提升了检测的精确度和模型的运行效率。排水管道缺陷检测作为保障城市公共设施正常运作的一个关键任务,利用深度学习模型进行自动化检测,能够大大提高工作效率和检测精度。 排水管道缺陷的类型多种多样,包括但不限于支管暗接、管道变形、沉积物堵塞等。对这些缺陷的检测需要对图像中的细微差别有极高的识别能力。为此,需要收集大量的标注图像来训练模型,以便模型能够识别和分类出不同种类的管道缺陷。在本项目中,数据集包含12,013张标注图像,每张图像都使用LabelMe工具进行了精确标注,为模型提供了丰富的学习样本。 在训练过程中,遵循了CJJ181技术规程对管道缺陷等级的划分,这使得模型不仅能够识别出缺陷类型,还能根据缺陷的严重程度进行等级分类。这种分类方法对于后续的维修决策和工程规划具有实际指导意义。 文章详细描述了整个排水管道缺陷检测项目的关键步骤,从环境配置到数据准备、模型训练、评估以及推理。环境配置确保了深度学习模型能够顺利运行;数据准备阶段需要将数据集转换成模型可识别的格式,并且进行了适当的增强,以增加数据的多样性,提高模型的泛化能力;模型训练部分详细介绍了使用YOLOv5进行训练的过程,包括训练命令的使用和训练参数的设定;评估阶段则通过可视化工具,对模型的检测效果进行评估,确保模型的准确性和可靠性;推理步骤和结果解析部分提供了模型推理的详细过程,并且通过自定义代码展示了如何根据实际需求进行推理。 文章不仅提供了技术实现的步骤,更注重技术背后的理念和思维,比如如何合理划分数据集、如何调整模型参数以获得更好的训练效果等,这些都是实际工程应用中需要重点关注的问题。文章通过实例演示了这些技术细节,旨在为排水管道缺陷检测任务提供全面的技术指导,使得这项技术能够更好地服务于工程实践。 此外,作者还强调了模型部署的重要性和后续开发的可能方向。如何将训练好的模型部署到实际的生产环境中,以及如何根据实际检测中遇到的新问题,继续优化模型,这都是实践中需要考虑的问题。文章的这部分内容,为项目的进一步发展指明了方向。 该项目不仅在技术实现层面具有较高的参考价值,更重要的是,它展示了如何将深度学习技术应用于实际工业检测任务中,为后续类似项目提供了宝贵的经验和参考。通过该项目的实施,可以预见,未来排水管道的缺陷检测将越来越自动化、智能化,为城市基础设施的维护和管理带来革命性的变化。
2026-01-18 22:05:46 542B 深度学习 目标检测 YOLOv5
1
适用于计算机视觉领域入门学习
1
本文详细介绍了如何使用YOLOv5和YOLOv8训练一个高精度的模型来检测三角洲行动数据集中的摸金。数据集包含3万张图片,其中1万张是摸金(全身标注)。文章从数据集准备、标注、配置文件创建、YOLO安装、模型训练、评估到实际检测的完整流程进行了详细说明。通过合理的参数设置和正确的数据集标注,可以有效提高模型的检测精度。 在深度学习领域,YOLO(You Only Look Once)模型是一种非常高效的实时目标检测系统。YOLO系列模型因其速度快和精度高,在目标检测任务中得到了广泛的应用。在本文中,作者详细介绍了如何利用YOLOv5和YOLOv8两个版本模型对三角洲行动数据集进行训练,以检测数据集中的一种特定目标——摸金。 该训练项目涉及的三角洲行动数据集非常庞大,包含了3万张图片,其中1万张图片进行了全身的细致标注。这种大规模且高质量的数据集为模型提供了丰富的训练样本,有助于训练出一个精确的检测模型。文章围绕数据集的准备和处理、标注、配置文件的创建、模型的安装与训练、评估和实际检测等方面,展开了全面的介绍。 数据集准备和标注是模型训练前的重要步骤,它直接关系到训练的质量和模型的性能。文章强调了数据集质量对于提高模型检测精度的重要性,并提供了详细的数据准备和标注指导。接下来,创建配置文件是将数据集适配到YOLO模型中的关键环节,需要仔细设置各类参数以适应不同任务需求。 在模型安装方面,文章提供了安装YOLO的详细步骤,以及必要的环境配置,确保读者能够顺利安装并使用YOLO进行目标检测。模型训练部分详细讲解了如何使用三角洲行动数据集来训练YOLO模型,以及如何通过合理设置超参数来提高模型的训练效果。 评估是模型训练过程中的重要一环,通过评估可以了解模型当前的性能水平,并根据评估结果进行相应的调整。文章中的评估环节指导读者如何进行模型的评估,并提供了评价模型性能的具体指标。 实际检测环节展示了模型训练完成后的应用效果,作者演示了如何使用训练好的模型去检测新图片中的摸金。这部分内容不仅让读者看到模型的实际应用效果,也为理解模型如何在实际场景中进行工作提供了直观的了解。 YOLO系列模型之所以受到青睐,是因为它不仅能够快速准确地完成目标检测,还在于它拥有一个活跃的开源社区,不断有新的版本更新和技术分享。通过本文,读者可以清晰地了解到如何使用YOLOv5和YOLOv8来训练出一个专门针对特定目标的检测模型,并在实际应用中发挥作用。 在深度学习的目标检测领域,本文提供了一套完整的流程指导,对于希望掌握YOLO模型训练和应用的开发者来说,是一份宝贵的参考资料。通过了解和实践本文介绍的内容,开发者能够更加深入地理解YOLO模型的工作原理,以及如何处理和应用大型数据集进行训练和评估。 文章内容不仅限于理论和步骤的介绍,还结合了实际操作中可能遇到的问题和解决方案,使得整套流程更加贴近实际,具有很高的实用价值。通过阅读本文,读者不仅能够学习到如何训练一个高精度的目标检测模型,还能了解到在数据处理、模型训练和性能评估等多方面的知识。
2026-01-15 16:30:39 19.45MB 目标检测 深度学习 数据集处理
1
标题Django与深度学习融合的经典名著推荐系统研究AI更换标题第1章引言阐述基于Django与深度学习的经典名著推荐系统的研究背景、意义、国内外现状、研究方法及创新点。1.1研究背景与意义分析传统推荐系统局限,说明深度学习在推荐系统中的重要性。1.2国内外研究现状综述国内外基于深度学习的推荐系统研究进展。1.3研究方法及创新点概述本文采用的Django框架与深度学习结合的研究方法及创新点。第2章相关理论总结深度学习及推荐系统相关理论,为研究提供理论基础。2.1深度学习理论介绍神经网络、深度学习模型及其在推荐系统中的应用。2.2推荐系统理论阐述推荐系统原理、分类及常见推荐算法。2.3Django框架理论介绍Django框架特点、架构及在Web开发中的应用。第3章推荐系统设计详细描述基于Django与深度学习的经典名著推荐系统的设计方案。3.1系统架构设计给出系统的整体架构,包括前端、后端及数据库设计。3.2深度学习模型设计设计适用于经典名著推荐的深度学习模型,包括模型结构、参数设置。3.3Django框架集成阐述如何将深度学习模型集成到Django框架中,实现推荐功能。第4章数据收集与分析方法介绍数据收集、预处理及分析方法,确保数据质量。4.1数据收集说明经典名著数据来源及收集方式。4.2数据预处理阐述数据清洗、特征提取等预处理步骤。4.3数据分析方法介绍采用的数据分析方法,如统计分析、可视化等。第5章实验与分析通过实验验证推荐系统的性能,并进行详细分析。5.1实验环境与数据集介绍实验环境、数据集及评估指标。5.2实验方法与步骤给出实验的具体方法和步骤,包括模型训练、测试等。5.3实验结果与分析从准确率、召回率等指标对实验结果进行详细分析,验证系统有效性。第6章结论与展望总结研究成果,指出不足,提出未来研究方向。6.1研究结论概括本文的主要研究结论,包括系统性能、创新点等。
2026-01-12 17:58:18 15.08MB python django vue mysql
1
内容概要:本文介绍了基于PSA-TCN-LSTM-Attention的时间序列预测项目,旨在通过融合PID搜索算法、时间卷积网络(TCN)、长短期记忆网络(LSTM)和注意力机制(Attention)来优化多变量时间序列预测。项目通过提高预测精度、实现多变量预测、结合现代深度学习技术、降低训练时间、提升自适应能力、增强泛化能力,开拓新方向为目标,解决了多维数据处理、长时依赖、过拟合等问题。模型架构包括PID参数优化、TCN提取局部特征、LSTM处理长时依赖、Attention机制聚焦关键信息。项目适用于金融市场、气象、健康管理、智能制造、环境监测、电力负荷、交通流量等领域,并提供了MATLAB和Python代码示例,展示模型的实际应用效果。; 适合人群:具备一定编程基础,对时间序列预测和深度学习感兴趣的工程师和研究人员。; 使用场景及目标:① 提高时间序列预测精度,尤其在多变量和复杂时序数据中;② 实现高效的参数优化,缩短模型训练时间;③ 增强模型的自适应性和泛化能力,确保在不同数据条件下的稳定表现;④ 为金融、气象、医疗、制造等行业提供智能化预测支持。; 其他说明:本项目不仅展示了理论和技术的创新,还提供了详细的代码示例和可视化工具,帮助用户理解和应用该模型。建议读者在实践中结合实际数据进行调试和优化,以获得最佳效果。
2026-01-12 10:43:31 41KB LSTM Attention 时间序列预测
1
基于深度学习的个性化携程美食数据推荐系统-d7fq1jtw【附万字论文+PPT+包部署+录制讲解视频】.zip
2026-01-11 08:36:37 29.94MB python
1
标题基于深度学习的个性化携程美食数据推荐系统研究AI更换标题第1章引言介绍个性化美食推荐的研究背景、意义、国内外现状及论文方法与创新点。1.1研究背景与意义阐述个性化美食推荐在旅游业中的重要性及研究价值。1.2国内外研究现状分析国内外个性化美食推荐系统的研究进展与不足。1.3研究方法以及创新点概述本文采用的研究方法及创新点。第2章相关理论介绍深度学习及个性化推荐系统相关理论。2.1深度学习基础阐述深度学习基本原理、神经网络模型及训练方法。2.2个性化推荐系统理论介绍个性化推荐系统的基本概念、分类及评价方法。2.3美食数据特征提取分析美食数据的特征提取方法,包括文本、图像等。第3章个性化携程美食数据推荐系统设计详细介绍个性化携程美食数据推荐系统的设计方案。3.1系统架构设计给出系统的整体架构、模块划分及功能描述。3.2深度学习模型选择选择适合美食推荐的深度学习模型,如CNN、RNN等。3.3推荐算法设计设计基于深度学习的个性化美食推荐算法。第4章数据收集与处理介绍数据收集、处理及特征工程的方法。4.1数据收集方法阐述数据来源及收集方式,包括用户行为数据、美食数据等。4.2数据预处理介绍数据清洗、去重、标准化等预处理方法。4.3特征工程阐述特征提取、选择及转换的方法。第5章实验与分析对个性化携程美食数据推荐系统进行实验验证和性能分析。5.1实验环境与数据集介绍实验所采用的环境、数据集及评估指标。5.2实验方法与步骤给出实验的具体方法和步骤,包括模型训练、测试等。5.3实验结果与分析从准确率、召回率等指标对实验结果进行详细分析,对比不同方法。第6章结论与展望总结本文的研究成果,并展望未来的研究方向。6.1研究结论概括本文的主要研究结论和创新点。6.2展望指出本文研究的不足之处以及未来在美食推荐领域的研究方向。
2026-01-11 08:34:14 68.08MB python
1
标题Python基于深度学习的个性化携程美食数据推荐系统研究AI更换标题第1章引言介绍个性化推荐系统在携程美食领域的应用背景、意义、研究现状以及论文的研究方法和创新点。1.1研究背景与意义阐述个性化推荐在携程美食数据中的重要性及其实际应用价值。1.2国内外研究现状概述国内外在个性化推荐系统,尤其是在美食推荐领域的研究进展。1.3论文方法与创新点简要说明论文采用的研究方法以及在该领域内的创新之处。第2章相关理论介绍深度学习和个性化推荐系统的相关理论基础。2.1深度学习基础阐述深度学习的基本原理、常用模型及其在推荐系统中的应用。2.2推荐系统概述介绍推荐系统的基本框架、主要算法和评估指标。2.3个性化推荐技术详细描述基于用户画像、协同过滤等个性化推荐技术的原理和实现方法。第3章基于深度学习的个性化推荐系统设计详细阐述基于深度学习的个性化携程美食数据推荐系统的设计思路和实现方案。3.1数据预处理与特征工程介绍数据清洗、特征提取和转换等预处理步骤,以及特征工程在推荐系统中的作用。3.2深度学习模型构建详细描述深度学习模型的构建过程,包括模型结构选择、参数设置和训练策略等。3.3推荐算法实现介绍如何将训练好的深度学习模型应用于个性化推荐算法中,并给出具体的实现步骤。第4章实验与分析对基于深度学习的个性化携程美食数据推荐系统进行实验验证,并对实验结果进行详细分析。4.1实验环境与数据集介绍实验所采用的环境配置、数据集来源以及数据集的预处理情况。4.2实验方法与步骤详细说明实验的具体方法和步骤,包括模型训练、验证和测试等过程。4.3实验结果与分析从准确率、召回率、F1值等多个角度对实验结果进行量化评估,并结合实际应用场景进行结果分析。第5章结论与展望总结论文的研究成果,并指出未来可能的研究方向和改进措施。5.1研究结论概括性地阐述论文的主要研究结论和创新成果。5.2未来研究方向根据当前研
2026-01-11 08:20:56 92.93MB django python mysql vue
1