“电气综合能源系统研究:利用分布鲁棒机会约束应对风电不确定性风险与模糊集处理”,电气综合能源系统中基于分布鲁棒机会约束的协同经济调度策略与仿真研究,分布鲁棒;复现;电气综合能源系统;分布鲁棒机会约束(DRCC);ADMM分布式算法;全网独,恶意差评的请绕路 有意者加好友 注:非完美复现 研究内容:为了应对风电不确定性给电气综合能源系统带来的运行风险,采用分布鲁棒机会约束,通过数据驱动的方式,以少量的风电预测误差历史数据得到与矩信息有关的模糊集,并将形成的机会约束问题转化为易于求解的形式。 仿真软件:matlab 参考文档:《不确定风功率接入下电-气互联系统的协同经济调度》fuxian 注意事项[火][火]:代码注释详细,运行稳定,仿真结果如下所示。 ,分布鲁棒;复现;电气综合能源系统;分布鲁棒机会约束(DRCC);ADMM分布式算法;数据驱动;风电预测误差;协同经济调度;Matlab仿真;运行稳定。,分布式鲁棒策略下的电气综合能源系统研究与仿真实现
2025-10-09 15:32:29 535KB xbox
1
在现代工程设计和流体动力学模拟中,准确地理解和量化湍流模型的不确定性变得越来越重要。湍流现象广泛存在于各种自然和工程环境中,其复杂性要求我们使用高效的模型来预测流体的运动和湍流特性。在众多模型中,雷诺平均纳维-斯托克斯(RANS)模型因其相对较低的计算成本而被工程实践所广泛采用。然而,RANS模型由于其固有的简化和结构缺陷,往往无法提供完全准确的预测。因此,对于基于RANS模型的预测准确性,进行不确定性估计成为了湍流研究中的一个热点和挑战。 传统上,通过构建和使用概率模型来量化预测的不确定性是一种常见做法。然而,这种方法在处理高度非线性和复杂的湍流系统时存在局限性。近年来,随着机器学习技术的飞速发展,尤其是随机森林算法等方法的引入,为解决这一问题提供了新的思路。机器学习的潜力在于从大量的实验数据和高保真度模拟数据中学习,以此来预测湍流的不确定性和变异性。 但是,简单的应用机器学习方法也可能带来新的问题。在湍流模型中,关键的雷诺应力张量必须满足一定的物理约束条件,如非负的分量、正定的矩阵等。如果忽略这些物理约束,可能导致模型产生非物理的预测结果,这些结果不仅违背了基本的物理定律,也可能导致数值模拟的不稳定和不收敛。这要求在应用机器学习方法时,必须考虑其与物理规律的兼容性。 本文介绍了一种结合机器学习和物理约束的框架,旨在解决上述问题。研究者使用随机森林算法来训练机器学习模型,该模型能从数据中学习到湍流特性的复杂模式和结构。接着,将训练好的模型嵌入到计算流体动力学(CFD)求解器中,以确保在估计不确定性的同时,模型的输出满足物理约束条件,从而保证预测结果的物理可行性。 通过这种方法,湍流模型不确定性估计不再仅仅依赖于传统的统计方法,而是通过数据驱动的学习和物理约束的结合,提高了预测的准确性和可靠性。这种新的框架不仅可以提供更精细的湍流预测,还能帮助识别和量化RANS模型的局限性,为更精确的不确定性评估提供了可能。 在实际工程应用中,这一方法的应用前景非常广泛。无论是在机械、航空航天、土木工程还是生物医学领域,湍流的准确预测都是提升设计效率和产品性能的关键。例如,在航空领域,准确模拟飞机翼型周围的流体行为对于设计更有效的翼型至关重要。在土木工程中,理解桥梁和建筑物周围的湍流特性可以提高其结构的安全性和耐用性。在生物医学领域,预测血液流动的湍流模式对于设计更有效的心脏瓣膜和血管支架具有重要意义。 未来的研究将着眼于进一步优化这一框架,提高预测精度的同时确保结果的物理一致性。同时,也需要开发易于集成到现有CFD软件中的计算工具,以便其他研究人员和工程师能够利用这些先进的方法来应对湍流建模的挑战。随着机器学习和物理约束结合方法的不断进步和推广,我们有望更高效地解决现实世界中复杂的流动问题,推动流体湍流建模的科学进步。
2025-10-01 22:05:08 1.07MB
1
内容概要:本文档详细介绍了基于列约束生成法(CCG)的两阶段鲁棒优化问题求解方法及其在MATLAB环境下的具体实现。文档不仅提供了详细的代码解析,还涵盖了主问题和子问题的求解过程,以及CCG迭代的具体步骤。文中通过具体的算例展示了CCG算法的应用,并讨论了不确定性和约束条件的处理方法。此外,文档还强调了代码的可读性和良好的编程习惯,如合理的变量命名和详细的注释。 适合人群:对优化理论感兴趣的研究人员和技术爱好者,尤其是希望深入了解两阶段鲁棒优化和CCG算法的人群。 使用场景及目标:适用于需要解决带有不确定性的复杂优化问题的场景,帮助读者掌握CCG算法的基本原理和实现技巧,提高解决实际问题的能力。 其他说明:文档提供的代码和实例非常适合初学者学习和实践,同时也为进阶研究提供了有价值的参考资料。
2025-09-18 13:08:20 387KB
1
sdc实用指南
2025-09-07 21:08:34 33.52MB 电子书
1
内容概要:本文介绍了一种创新的电力系统安全约束机组组合模型,该模型特别考虑了火电机组、海上风电和储能共同参与调频的问题。模型不仅关注传统的经济调度,还将频率安全约束纳入优化目标。通过GAMS平台进行数学建模,利用MATLAB进行数据分析和可视化,展示了如何在IEEE 39节点系统上实现这一复杂的优化问题。文中详细解释了模型的关键组成部分,如频率响应方程、调频资源分配、储能充放电策略等,并提供了具体的代码示例。此外,作者还提出了几个潜在的研究方向,如风电调频能力的概率建模、储能寿命损耗与调频收益的博弈等。 适合人群:从事电力系统研究的专业人士,尤其是对机组组合优化、调频技术和多能互补感兴趣的学者和技术人员。 使用场景及目标:适用于希望深入了解电力系统调频机制及其优化方法的研究人员。主要目标是通过实际案例和代码实现,帮助读者掌握如何构建和求解考虑频率安全约束的机组组合模型,从而提高系统的稳定性和经济效益。 其他说明:本文提供的模型和代码可以在GitHub上找到,鼓励有兴趣的读者在此基础上进行进一步的研究和发展。
2025-08-21 13:31:14 1.14MB
1
基于GAMS和MATLAB平台的多能源调频安全约束机组组合优化模型——整合火电机组、海上风电与储能系统的协同应用,《融合GAMS与MATLAB的电力系统安全约束机组组合模型:火电机组、海上风电及储能调频的优化研究》,GAMS+MATLAB代码:《考虑火电机组、海上风电、储能共同参与调频的电力系统安全约束机组组合》,模型很创新,可改进发文,本人biye了用不着文章,本来打算融合其他求解算法发EI,有idea一起送给有缘人,懂得来,同行勿扰~ 在传统机组组合模型中考虑频率安全约束,考虑了火电机组 海上风电 和储能参与调频,题材新颖,优化模型基于GAMS平台编程,算例分析在IEEE 39节点系统上进行,画图基于MATLAB平台 ,核心关键词: 考虑火电机组; 海上风电; 储能调频; 电力系统安全约束机组组合; GAMS代码; MATLAB画图; IEEE 39节点系统; 优化模型; 创新模型; 融合其他求解算法。,GAMS-MATLAB融合模型:创新电力调频策略
2025-08-21 13:29:27 3.87MB paas
1
内容概要:本文详细介绍了在电力系统中,特别是在高可再生能源渗透率的情况下,如何利用Matlab实现分布鲁棒联合机会约束下的能量和备用调度。文中讨论了两阶段随机程序的应用,重点解释了Wasserstein模糊集的作用及其在处理不确定性和保障系统安全方面的优势。通过具体的Matlab代码示例展示了如何构建Wasserstein模糊集、处理联合机会约束以及优化调度策略。实验结果表明,相比传统的随机规划方法,该模型不仅提高了系统的可靠性,还显著降低了成本波动,实现了更好的经济性和鲁棒性的平衡。 适合人群:从事电力系统研究和技术开发的专业人士,尤其是关注可再生能源接入和智能电网调度的研究人员和工程师。 使用场景及目标:适用于需要解决高可再生能源渗透带来的不确定性和复杂性的电力系统调度场景。主要目标是在保证系统安全可靠的前提下,降低运营成本,提高经济效益。 其他说明:文中提供的Matlab代码为简化版本,实际应用时需根据具体情况调整和完善。此外,文中提到的一些关键技术如Wasserstein模糊集、联合机会约束等,对于理解和改进现有调度模型具有重要指导意义。
2025-08-15 11:00:46 1.38MB
1
电子中的弹性中微子散射是一种精确已知的纯轻子过程,它为测量常规中微子束中的中微子通量提供了标准蜡烛。 使用背景扣除后的810个中微子电子散射的总样本,该测量将2和20 GeV之间的μμNuMI束通量的归一化不确定度从7.6%降低到3.9%。 这是迄今为止中微子电子散射最精确的测量,将减少MINERVA绝对截面测量的不确定性,并证明该技术可用于未来的中微子束,例如长基线中微子设施。
2025-08-11 17:51:25 996KB Open Access
1
基于带约束的MATLAB源码,研究机械臂轨迹规划算法的优化——从353多项式到改进的鲸鱼优化算法的时间最优策略,机械臂轨迹规划算法优化:鲸鱼算法与改进算法的时间最优对比及带约束Matlab源码实现,机械臂轨迹规划算法,鲸鱼算法优化353多项式,时间最优,鲸鱼优化算法与改进鲸鱼优化算法对比,带约束matlab源码。 ,核心关键词:机械臂轨迹规划算法; 鲸鱼算法优化; 多项式; 时间最优; 对比; 带约束; MATLAB源码。,基于鲸鱼算法的机械臂轨迹规划与优化研究:改进与对比 在现代工业自动化领域中,机械臂的轨迹规划是一项核心研究课题,其涉及到算法设计、控制策略、运动学以及动力学等多个领域。为了提升机械臂的运动效率和精确性,研究者们不断探索和开发新的轨迹规划算法。在给定的文件信息中,我们可以提取出几个核心关键词,它们分别是:机械臂轨迹规划算法、鲸鱼算法优化、多项式、时间最优、对比、带约束、MATLAB源码。基于这些关键词,我们可以推导出一系列相关知识点。 机械臂轨迹规划算法是指在特定的工作环境中,如何设计机械臂的运动路径以达到预定的工作任务。这项任务涉及到路径点的选择、运动轨迹的平滑性、避免碰撞、最小化运动时间等多个优化目标。机械臂的轨迹规划算法通常需要满足实际操作中的约束条件,如速度、加速度限制、关节角度限制等。 鲸鱼算法是一种新型的启发式优化算法,它的原理是模拟鲸鱼群体的捕食行为。这种算法因其出色的全局搜索能力和较快的收敛速度而受到了广泛关注。在机械臂轨迹规划领域,鲸鱼算法可以用来寻找最佳的运动路径,实现时间最优、能耗最优或其他性能指标的优化。 在文件中提到的“353多项式”可能指的是某种特定的轨迹规划多项式模型,它可能是机械臂运动学建模中使用的一种标准多项式,用于描述机械臂的运动轨迹。而“改进的鲸鱼优化算法”则是对传统鲸鱼算法进行改进,以更好地适应机械臂轨迹规划问题的需求。 时间最优策略是指在保证机械臂运动轨迹满足所有约束条件的前提下,使机械臂的完成任务的时间最短。这是机械臂轨迹规划中最为关键的优化目标之一。时间最优的实现往往需要结合精确的数学模型和高效的优化算法。 带约束的MATLAB源码则是指在MATLAB软件环境下编写的算法代码,它能够处理机械臂轨迹规划过程中的各种约束条件。MATLAB因其强大的数学计算能力和丰富的函数库,在机械臂轨迹规划的研究中被广泛应用。 将这些知识点整合起来,我们可以看到这份文件内容聚焦于机械臂轨迹规划算法的优化问题,特别是鲸鱼算法在该领域的应用。通过对比传统的353多项式模型和改进后的鲸鱼算法,研究者们试图实现机械臂轨迹规划的时间最优策略。此外,文件中提及的“带约束MATLAB源码实现”则强调了算法实现的过程和工具,为研究者们提供了研究和实践的起点。 通过“改进与对比”这一关键词,我们可以推断出文档中的研究内容可能包括对比分析传统鲸鱼算法与改进算法在机械臂轨迹规划中的表现,并提供相应的MATLAB源码实现。这将有助于进一步了解算法的优劣,并指导工程实践中算法的选择和应用。
2025-07-29 19:56:47 272KB
1
DUNE(深层地下中微子实验)是美国提议的长基线中微子实验,基线是从费米国家加速器实验室(Fermilab)到桑福德地下研究设施1300公里,该设施将容纳40 kt液态氩时间投影室( LArTPC)作为远端检测器。 该实验还将有一个细颗粒的近探测器,用于精确测量初始通量。 我们显示,通量和探测器附近的DUNE基线的能量范围是有利于观察Âm2eeV2规模的无菌中微子的γ-β-βe振荡,因此可以有效地用于测试所报告的非常高精度 LSND和MiniBooNE实验看到的振荡信号。 我们通过改变基线,探测器基准质量和系统不确定性来研究DUNE探测器对无菌中微子振荡的敏感性。 我们发现,目前在DUNE提出的近距离探测器的探测器质量和基线将能够以良好的精度测试整个LSND参数区域。 可以看出,灵敏度对基线和检测器质量的依赖性很有趣,而对系统不确定性的依赖性很小。
2025-07-18 20:50:34 543KB Open Access
1