针对已有神经网络功放建模的建模精度不高,易陷入局部极值等问题,提出一种新的改进并行粒子群算法(Improved Parallel Particle Swarm Optimization,IPPSO)。该算法在并行粒子群算法的基础上引入自适应变异操作,防止陷入局部最优;在微粒的速度项中加入整体微粒群的全局最优位置,动态调节学习因子与线性递减惯性权重,加快微粒收敛。将该改进算法用于优化RBF神经网络参数,并用优化的网络对非线性功放进行建模仿真。结果表明,该算法能有效减小建模误差,且均方根误差提高19.08%,进一步提高了神经网络功放建模精度。
1
改进的粒子群算法和归一化罚分法求解多目标优化问题
2021-11-04 10:07:48 523KB 研究论文
1
基于改进多粒子群算法的电力系统无功优化.pdf
2021-10-08 23:20:25 287KB 算法 粒子群 数据结构 参考文献
提出了一种改进的量子粒子群算法,并将该算法用于求解非线性混合整数规划问题。构造了一种自适应调整的惯性权重,平衡了算法的全局搜索和局部搜索能力;针对混合整数规划问题,给定一定比例的初始可行解,提高了初始种群解的多样性;利用协同进化选择策略,对种群中的不可行解重新生成,使种群中每个粒子的信息充分利用,从而提高算法的收敛速度;为了抑制算法的早熟现象,给出了一种新的混沌搜索方式,对全局最优解进行局部搜索,增强算法的局部搜索能力。通过16个常见的测试函数测试结果表明,改进的量子粒子群优化算法对求解非线性混合整数规划问题,在成功率和精度方面得到很大的提高。
1
基于改进量子粒子群算法的配电网络优化重构
2021-06-01 20:44:32 1.33MB 研究论文
1
该代码是经过改进后的粒子群算法代码,亲自测试了,可用。
2021-05-29 15:14:46 2KB PSO LinWPSO
1
传统的粒子群算法训练神经网络的水质评价模型有学习速度慢,容易陷入局部最优和精确性不高的缺点。为了克服模型的缺点,提出了利用改进的自适应量子粒子群算法训练T-S模糊神经网络的新模型,新的自适应量子粒子群算法通过在算法中引入聚集度的概念,使得算法可以在迭代中自适应地调整收缩扩张系数,让算法更具动态自适应性。新的模型结合了量子粒子群算法和T-S模糊神经网络的优点,提高了模型的泛化能力。通过对东江湖流域站点2002到2013年的水文数据进行实验,结果显示,该模型比其他神经网络模型的评价结果具有更高的效率,适合被用于日常水质评价工作。
2021-05-18 12:24:22 710KB 论文研究
1
为了改善旅行商(TSP)优化求解能力,对模拟退火与混合粒子群算法进行改进,引入了自适应寻优策略。交叉、变异的混合粒子群算法,易于陷入局部最优,而自适应的模拟退火算法可以跳出局部最优,进行全局寻优,所以两者的结合兼顾了全局和局部。该算法增加的自适应性寻优策略提供了判定粒子是否陷入局部极值的条件,并可借此以一定概率进行自适应寻优,增强了全局寻优能力。与混合粒子群算法实验结果对比,显示了本文算法的有效性。
1
本文基于支持向量机(SVM)和改进的粒子群优化(IPSO)算法(SVM-IPSO)创建了双向预测模型,以预测碳纤维的性能和生产参数。 在SVM中,选择对预测性能有重要影响的参数至关重要。 提出了IPSO对它们进行优化的方法,然后将SVM-IPSO模型应用于碳纤维产量的双向预测。 SVM的预测精度主要取决于其参数,因此利用IPSO来寻找SVM的最佳参数,以提高其预测能力。 受小区通信机制的启发,我们通过将全球最佳解决方案的信息纳入搜索策略来提出IPSO,以提高开发效率,并采用IPSO建立双向预测模型:在前向预测的方向上,我们认为富有成效参数作为输入,属性索引作为输出; 在向后预测的方向上,我们将性能指标视为输入,将生产参数视为输出,在这种情况下,该模型成为新型碳纤维的方案设计。 来自一组实验数据的结果表明,该模型的性能优于径向基函数神经网络(RNN),基本粒子群优化(PSO)方法以及遗传算法和改进的粒子群优化(GA- IPSO)方法在大多数实验中都是如此。 换句话说,仿真结果证明了SVM-IPSO模型在处理预测问题方面的有效性和优势。
2021-02-24 18:05:01 536KB support vector machine; particle
1
粒子群算法是求解函数优化问题的一种新的进化算法,然而它在求解高维函数时容易陷入局部最优; 为了克服这个缺点,提出了一种新的粒子群算法,算法对粒子的速度和位置更新公式进行了改进,使粒子在其最优位置的基础上进行位置更新,增强了算法的寻优能力; 通过对 " 个基准函数的仿真实验,表明了改进算法的有效性
2019-12-21 21:41:11 106KB 智能算法
1