【标题解析】 "Spring+SpringMVC+MyBatis搭建的一个典当系统附带MySQL数据库!" 这个标题揭示了项目的核心技术栈,它是一个基于Java的Web应用程序,利用了Spring框架作为核心,SpringMVC作为控制层组件,MyBatis作为数据访问层的解决方案,同时整合了MySQL数据库来存储数据。这种架构模式在企业级应用开发中非常常见,因为它提供了良好的分层设计,可维护性和扩展性。 【描述分析】 描述中的信息与标题一致,强调了这是一个使用Spring、SpringMVC和MyBatis框架构建的典当系统,并且集成了MySQL数据库。这表明该系统具备完整的业务流程和数据管理功能,可能包括典当物品的登记、估价、交易、赎回等操作,且所有这些业务逻辑都在一个支持数据库操作的环境中运行。 【标签解析】 "酒店管理系统"这个标签虽然与标题描述的典当系统不符,但可能意味着这个项目中包含了一些适用于酒店管理的模块或功能,如房间预订、入住退房管理、账单结算等。或者,这可能是一个错误的标签,实际项目可能并未涉及酒店管理领域。 【技术栈详解】 1. **Spring框架**:Spring是Java领域的一个全功能的开源框架,提供了依赖注入(DI)和面向切面编程(AOP)等功能,有助于简化应用程序的开发和管理。在这个系统中,Spring可能用于配置bean,管理对象间的依赖关系,以及提供事务管理。 2. **SpringMVC**:作为Spring的一部分,SpringMVC是一个用于构建Web应用的模型-视图-控制器(MVC)框架。它处理HTTP请求,将请求映射到相应的控制器方法,执行业务逻辑,然后将结果返回给视图进行渲染。 3. **MyBatis**:MyBatis是一个轻量级的持久层框架,它允许开发者将SQL语句直接写在XML配置文件或注解中,与Java对象映射,提供了灵活的数据访问方式。在这个系统中,MyBatis可能被用来执行数据库查询和更新操作,与Spring结合可以实现更高效的数据访问。 4. **MySQL数据库**:MySQL是一种广泛使用的开源关系型数据库管理系统,以其高效率、稳定性著称。在这个系统中,MySQL负责存储和管理典当系统的各种业务数据,如典当品信息、用户信息、交易记录等。 这个项目是一个基于Java技术栈的Web应用,涵盖了业务逻辑处理、用户交互以及数据存储的完整流程。对于学习和理解Spring全家桶及MyBatis的集成应用,以及如何构建一个实际的数据库驱动的Web系统具有很高的参考价值。同时,如果标签正确,那么项目中可能还包含了适应酒店管理场景的定制化功能。
2025-12-29 02:28:54 12.5MB 酒店管理系统
1
倒计时模型,搭建的四路抢答模型
2025-12-28 11:40:38 397KB 数电仿真
1
永磁同步电机(PMSM)位置三环控制模型的搭建过程及其原理。首先解释了电流环的设计,包括关键公式的推导和MATLAB代码实现,强调了积分项处理的重要性以及参数整定的方法。接着讨论了速度环的作用,特别是加速前馈补偿的应用,提高了系统的动态响应速度。最后探讨了位置环的设计,提出了变参数PID控制器来增强抗干扰能力和提高控制精度。此外,还提到了dq轴耦合问题的解决方法,并推荐了几本相关领域的权威书籍供进一步学习。 适合人群:对电机控制系统感兴趣的工程技术人员、研究人员及高校学生。 使用场景及目标:适用于需要深入了解和掌握PMSM位置三环控制模型的设计原理和技术细节的人群。目标是帮助读者能够独立完成类似控制系统的开发和优化。 其他说明:文中提供了具体的数学公式、编程代码片段以及实用技巧,有助于读者更好地理解和应用所学知识。同时,推荐了一些专业书籍作为扩展阅读材料,便于读者进行更深入的学习。
2025-12-25 22:06:06 185KB 电机控制 MATLAB PID控制 参数整定
1
在电子工程领域,使用Proteus软件来搭建步进电机的仿真模型是一种常见的实践,尤其是在教学和研究环节。Proteus是一款电子电路仿真软件,它允许用户在电脑上模拟电路的工作,而无需实际搭建电路。这种仿真技术可以帮助工程师和学生在没有物理组件的情况下测试电路设计,从而节约时间和成本。 51单片机是一种经典的微控制器,它拥有广泛的使用背景和丰富的资源。步进电机是一种将电脉冲转化为机械角度移动的执行元件,常用于需要精确位置控制的场合。而ULN2003是一款常用的驱动芯片,它能够提供足够的电流驱动步进电机。 在本次实践中,通过Proteus软件,我们能够构建一个基于51单片机控制ULN2003驱动5线4相步进电机的仿真系统。在这个系统中,通过编程51单片机,可以实现对步进电机的多种控制模式。其中,按键控制是一个简单且直观的用户界面,可以实现对步进电机正转、反转、调速以及单步测试等功能。 正转和反转功能允许步进电机按照预先设定的方向进行运转,这对于需要往返移动的应用场景非常实用。调速功能可以控制步进电机的速度,这对于需要精确控制运动速度的场合至关重要。而单步测试功能则是一个调试工具,它允许用户逐个脉冲控制电机运动,便于检查电路设计是否正确以及步进电机的响应是否符合预期。 在仿真环境中,这些功能的实现不需要真实的硬件按键,而是通过鼠标点击仿真界面上的虚拟按键来模拟。这意味着,用户可以非常方便地在软件界面上进行各种操作,调整参数,观察结果,而且可以无限次地重复实验,这在传统的硬件实验中是不可想象的。 使用Proteus软件进行步进电机的仿真,不仅可以帮助学习者理解步进电机的工作原理和控制方法,而且通过仿真结果可以直观地看到每个参数调整对电机性能的影响。这种方法是理论学习与实践操作结合的有效手段。 除此之外,51单片机的编程以及与ULN2003驱动的接口设计也是整个项目的重要部分。工程师需要编写程序代码,并将其烧录到单片机中,然后观察步进电机的响应是否正确。这不仅仅是一个简单的编程任务,还需要对51单片机指令集、步进电机控制原理有深入的理解。 整个仿真项目是一个系统工程,它涵盖了电路设计、程序编写、仿真测试等多个环节。对于从事相关领域的专业人士以及电子爱好者来说,通过这个项目能够提高自身的动手能力和解决实际问题的能力。同时,也为那些缺乏实际实验条件的学习者提供了一个非常宝贵的实践平台。 此外,Proteus仿真模型的搭建过程本身,也是一种学习过程。在构建仿真模型的过程中,学习者不仅需要掌握Proteus软件的使用方法,还需要深入理解单片机编程以及电机控制理论。这种综合性的学习方式有助于提升个人的综合素质,使其在未来的电子工程设计中更加得心应手。 利用Proteus软件搭建基于51单片机和ULN2003驱动的步进电机仿真系统,不仅可以帮助用户深入学习和理解步进电机的控制原理和使用方法,还能够提高设计和实验的效率,节省成本,是电子工程领域教学和研究的有力工具。同时,它也能够为工程技术人员提供一个良好的实践平台,帮助他们在没有实际物理组件的情况下测试和优化他们的电路设计。
2025-12-25 15:07:59 212KB proteus 步进电机
1
在使用Proteus软件进行单片机仿真时,一个经典的应用便是通过DS18B20温度传感器来实现温度数据的采集与显示。DS18B20是一款数字式温度传感器,它具备数字信号输出的特点,能够将温度直接转换为数字信息,方便进行处理。在51单片机平台上,DS18B20与单片机之间的通信多采用单总线(One-Wire)的方式,这种方式可以减少所需I/O端口的数量,使得硬件连接更为简洁。 使用Proteus软件搭建仿真环境时,首先需要在Proteus中创建一个项目,并选择合适的51单片机型号进行放置,随后在库中搜索DS18B20模型并添加到项目中。在搭建硬件连接时,DS18B20的数据线需要连接到单片机的指定I/O口,并配置好地线和电源线。在完成了硬件连接后,接下来需要编写相应的程序代码。代码的编写通常在KEIL C51集成开发环境中完成,编写的内容包括对DS18B20的初始化、读取温度数据以及对数据的处理和显示。 在编写程序时,重要的步骤包括初始化单总线、发送指令序列、启动温度转换、读取温度值以及将读取的温度值通过某种方式(比如LCD显示屏)显示出来。实现这些步骤需要对DS18B20的数据手册有充分的理解,特别是它的命令集和通信协议。此外,还需要熟悉51单片机的编程,包括定时器、中断、I/O操作等。 编译成功之后,将生成的HEX文件加载到Proteus中的单片机模型,即可开始仿真测试。在仿真运行过程中,可以观察到DS18B20传感器采集到的温度数据在界面上的变化,验证代码的正确性和硬件连接的稳定性。 本教程中提到的Proteus9.0和KEIL5 C51软件是进行51单片机仿真的常用工具,它们各自具有强大的功能:Proteus用于电路仿真和PCB设计,而KEIL则是一个功能强大的集成开发环境,提供了代码编写、编译、调试等一系列开发功能,使得开发和测试过程可以高效完成。 通过在Proteus中搭建51单片机和DS18B20的仿真环境,工程师和爱好者可以在没有实际硬件的情况下进行项目的测试与调试,这样既可以节省开发成本,又可以提高开发效率。同时,这种方法还非常适合用于教学和自学,有助于学习者更直观地理解单片机的工作原理及其与外围设备的交互过程。
2025-12-25 12:19:24 113KB proteus
1
人工智能技术是当今科技发展的重要驱动力之一,它通过模拟人类智能过程,使得计算机能够执行一些通常需要人类智慧才能完成的任务。在众多应用领域中,人工智能模型在图像识别领域的表现尤为突出,尤其是深度学习技术的出现,进一步推动了图像识别技术的发展。VGG16是深度学习领域的一个经典模型,它在图像分类任务上取得了卓越的性能。而kaggle作为一个提供数据竞赛的平台,为研究人员和爱好者提供了一个分享资源、交流思想和解决问题的场所。 在本次介绍的内容中,我们将重点关注如何使用kaggle平台提供的资源,手动搭建VGG16模型,并通过宝可梦图片数据集来实现五分类任务。宝可梦图片数据集包含了大量的宝可梦图片,每张图片都被标记了相应的类别。通过使用这个数据集,我们不仅能够训练模型进行有效的图片识别,还能够对模型的性能进行评估。在这个过程中,我们将会采用预训练的方法,即首先加载VGG16的预训练参数,然后通过在宝可梦数据集上进行再次训练,使得模型能够更好地适应新的分类任务。 构建VGG16模型的过程可以分为几个关键步骤。需要准备好训练和测试数据集。数据集通常会被分为多个文件夹,每个文件夹包含一种宝可梦类别的图片。需要对数据进行预处理,包括调整图片大小、归一化等步骤,以保证数据符合模型训练的输入要求。接下来,构建VGG16网络结构,包括卷积层、池化层、全连接层以及softmax输出层。在搭建好网络结构之后,加载预训练的权重参数,并对模型进行微调,使其适应新的分类任务。 微调过程中,通常会调整最后几层全连接层的权重,因为这些层负责将高层次的特征映射到具体的分类结果上。通过在宝可梦数据集上进行训练,模型会逐步优化这些层的权重参数,从而提高对宝可梦类别的识别准确性。训练完成后,我们可以使用测试数据集对模型的性能进行评估。通过比较模型输出的分类结果和实际的标签,可以计算出模型的准确率、混淆矩阵等性能指标。 在实际应用中,VGG16模型不仅限于宝可梦图片的分类,它还可以被应用于其他图像分类任务,如识别不同种类的植物、动物、交通工具等。此外,VGG16模型的设计思想和技术方法同样适用于图像分割、目标检测等其他视觉任务。因此,学习如何使用VGG16模型对宝可梦图片进行分类是一个很好的入门级案例,有助于掌握更高级的图像识别技术。 随着技术的不断进步,人工智能模型正变得越来越复杂和强大。通过不断研究和实践,我们能够更好地理解模型的工作原理,并将其应用到更多的领域和任务中去。对于希望深入学习人工智能领域的朋友而言,掌握如何手动搭建和训练模型是基本功,而kaggle等竞赛平台则提供了丰富的资源和实践机会,是学习和成长的宝库。
2025-12-23 22:41:28 330.77MB 人工智能
1
本文介绍了如何利用LangChain框架快速搭建一个基于RAG(检索增强生成)技术的知识库系统。作者分享了实际工作中遇到的文档繁多、沟通效率低等问题,并提出了通过RAG技术结合大模型能力来优化解决方案。文章详细阐述了RAG技术的原理、搭建流程及核心代码实现,包括文档加载、向量数据库构建、检索接口封装等关键步骤。此外,还提供了项目运行环境配置、效果展示以及后续优化建议,如知识库动态更新、模型微调等。最后,作者推荐了系统学习大模型的相关资源,包括书籍、报告和教程等。 LangChain框架为构建RAG技术的知识库系统提供了一种高效的方法。RAG技术即检索增强生成,是一种将信息检索和文本生成技术结合在一起的新范式。RAG技术利用预先构建的大量信息集合,比如文档或者数据库,通过检索来辅助生成更准确、更具体的文本回答。其核心优势在于它能更好地处理开放域的问题,并在生成过程中利用外部知识,从而提高模型回答问题的准确性和可靠性。 搭建一个RAG知识库系统需要进行一系列详细的步骤。首先是文档的加载,这是知识库构建的第一步,需要将包含关键信息的文档整合到系统中。然后是构建向量数据库,这一步骤是将文本信息转化为向量表示,便于后续的快速检索。接下来是检索接口的封装,它是用户与知识库交互的界面,负责接收问题并返回答案。 除了构建过程,项目环境的配置同样重要。这包括安装和设置必要的软件环境、库和依赖项,以确保系统能够正常运行。在系统搭建完成后,作者还介绍了如何展示系统的效果,并根据实际运行情况进行优化建议。这些建议通常包括如何实现知识库的动态更新,以保持知识库内容的新鲜和准确,以及如何进行模型微调来提升系统性能。 为了更深入地理解大模型以及如何更有效地使用LangChain框架,作者还推荐了相关的学习资源。这些资源包括专业书籍、研究报告以及实用教程,帮助读者从理论到实践全方位掌握大模型的使用技巧。 本文为读者提供了一套完整的构建基于RAG技术知识库的方法论,从原理、构建到优化,乃至进一步的学习资源推荐,为在实际工作中遇到文档管理和沟通效率低下问题的专业人士提供了一个切实可行的解决方案。
2025-12-20 07:24:15 7KB 软件开发 源码
1
Clang与LLVM作为开源编译器基础设施和编译器前端,因其代码清晰、模块化和设计简洁,在编译器社区中颇受欢迎。LLVM是底层虚拟机(Low-Level Virtual Machine)的缩写,它不仅提供了一个中间表示(IR),还提供了一系列后端优化技术,能够生成高效的目标代码。Clang是LLVM项目的编译器前端,专门用于C、C++、Objective-C等语言,其设计目标之一是提供更快的编译速度和更好的模块化。本指南将详细介绍如何在您的开发环境中搭建Clang与LLVM环境。 搭建Clang与LLVM环境涉及多个步骤,包括但不限于获取源代码、配置编译环境、编译安装以及验证安装。您需要从官方的GitHub仓库或其他源获取LLVM和Clang的最新源代码。获取源代码后,您将需要配置环境,包括安装依赖的编译工具和库文件。接着,您可以编译并安装这些工具。验证安装是确保您的环境搭建正确的关键步骤。 在实际搭建过程中,您可能需要熟悉构建系统如CMake或Makefile,以及依赖关系管理工具如libtool或pkg-config。Linux用户可能会依赖包管理器来简化依赖项的安装过程。此外,对于Windows用户来说,官方提供了预编译的二进制文件和详细的安装说明,使得安装过程相对简单。 本指南不仅会指导您完成这些步骤,还会提供一些优化建议和常见问题的解决方案,例如如何使用Clang和LLVM进行跨平台开发、如何集成到现有的开发工作流中,以及如何利用LLVM的IR进行代码分析和优化。 Clang与LLVM的开发环境搭建完成后,您可以开始探索LLVM的架构、编写或修改前端代码,或者使用LLVM的优化组件来提高应用程序的性能。Clang与LLVM的灵活性和强大的功能使得它们成为研究和开发高性能编译器的理想选择。 Clang与LLVM的开发环境搭建是一个复杂但非常有价值的步骤,它将为您的编程和编译器研究提供强大的支持。本指南旨在使这一过程尽可能地顺畅和高效,无论您是编译器开发新手还是有经验的专家,都能从中受益。
2025-12-18 17:06:35 260B Clang LLVM
1
PX4是无人机自主飞行控制软件的主要选择之一,而Ubuntu操作系统因其强大的社区支持和软件包生态成为开发者的首选平台。搭建一个基于PX4和Ubuntu 24.04.3的无人机开发环境对于无人机爱好者和专业人士都是一项重要任务。 在搭建开发环境的过程中,首先需要确保Ubuntu系统环境满足PX4的编译要求。对于Ubuntu 24.04.3,用户通常需要安装开发工具、依赖库以及特定的版本控制工具。比如使用apt-get安装一系列包,如cmake、make、gcc、g++等。 开发者在搭建过程中会频繁用到命令行工具,比如使用git进行代码的克隆和更新。紧接着,开发者需要下载PX4源码,然后使用make工具来编译PX4固件。这个过程中,可能会遇到一些依赖问题,比如Gazebo模拟器的依赖问题,这时候需要额外安装Gazebo及其依赖库。 当遇到错误提示时,如文章内容中所示的Gazebo模拟器依赖未找到的问题,用户可以参考官方文档进行问题的解决。文档通常会提供详细的安装指南,指导用户如何下载安装所需的软件包。此外,用户也可以通过在线社区、论坛等途径获取帮助,因为这些平台上常常有其他开发者分享过他们遇到类似问题的解决方法。 在安装Gazebo之前,还可能需要安装一些额外的依赖项。例如,使用apt-get安装curl、lsb-release、gnupg等包时,可能会因为网络原因导致连接失败,这时可以更换软件源为国内镜像源以加快下载速度,并提高安装成功率。更换源后,继续使用apt-get update和apt-get install命令来安装所需的软件包。 整个搭建过程中,用户需要按照PX4官方提供的安装指南进行操作,遇到问题及时查阅官方文档和社区讨论。搭建成功的标准是能够顺利编译PX4固件,并成功启动Gazebo模拟环境,进而开始进行无人机飞行控制系统的开发和测试。 PX4的构建过程中,经常用到的命令包括make px4_sitl gz_x500,这条命令旨在编译PX4固件并集成Gazebo X500仿真环境。如果在构建过程中遇到错误,如文章内容所示,提示Gazebo模拟依赖未找到,表明可能缺少了必要的Gazebo相关包或配置错误。用户需要确保Gazebo已正确安装,并且所有必要的依赖项都已满足。如果错误信息指明了问题的具体方面,如缺少某个具体的依赖包或组件,那么需要按照提示进行相应的安装或修复。 此外,文章提到的make工具在编译过程中起到了核心作用,它根据开发者指定的配置和规则去编译代码。如果在make过程中出现错误,可能需要检查Makefile文件是否配置正确,或者是否缺少了某些编译所需的文件。 文章内容中还显示了Linux系统下的更新软件源命令。这是在安装或更新任何软件之前,保证系统源列表是最新的标准步骤。使用sudo apt-get update命令来同步软件包列表,确保后续安装步骤能够访问到最新的软件包信息。此外,sudo apt-get install命令用于安装具体的软件包,这个过程也可能需要替换为国内的镜像源,以应对网络环境的限制,确保下载和安装的顺利进行。 在整个过程中,正确的文档阅读习惯和问题解决能力是不可或缺的。对于任何一个遇到的错误,都应当详细阅读错误信息,并且按照给出的解决方案或参考官方文档进行尝试。同时,与其他开发者的交流也是解决问题的一个有效途径。 PX4的构建过程不是一次性就能完成的,可能需要反复尝试和调整。例如,如果一个依赖包安装失败,那么可能需要检查网络连接,或者寻找其他可能的安装源。同样,如果在编译过程中出现新的错误提示,那么就需要根据新的错误信息进行相应的处理。在这个过程中,耐心和细致是非常重要的,因为任何一个小的疏忽都可能导致构建失败。 当所有构建步骤完成后,开发者应该验证安装是否成功。这通常包括运行PX4固件,使用Gazebo进行仿真测试,以确保无人机软件能够在模拟环境中正确地飞行和执行任务。成功搭建完开发环境后,就可以开始无人机的自主飞行控制系统的开发和优化工作了。
2025-12-17 09:32:18 87KB
1