ETF实盘历史波动数据 - 实盘原始股票期权行情数据从2015-01至2020-06(持续更新中...) - 数据为每日原始实盘50ETF行情数据,包括每个合约的开盘、最高、最低、收盘及行权价格、持仓、交易量等数据。 - 包括不同时间频率(周、1/2/3/5/6/9月,1/2年)的历史波动数据 - 算法按照yz算法(也可包括 c2c 、parkinson 、garmanklass 、rsy其他算法) - 数据格式为bson/json(适用mongodb数据库)。可以提供分钟级别数据,如果需要excel/csv或其他格式、或需要更多历史和不同频率实时数据。
2022-04-08 16:30:45 132KB 50etf 期权 历史波动 数据
1
这款EA经测试刷单效果不只是单量多,做单准确率高,盈利也是特别的强悍,经过不到5个月的测试,收益直接翻11.5倍。本EA顺势加仓为主,避免了单边行情的爆仓风险。
2022-02-19 21:52:15 678KB 趋势科技 马丁策略 三角套利 实盘
1
某站卖一千的在线股票配资配资股票交易与牛股跟投带实盘策略的区块链整站源码 第1步 上传程序 第2步 修改输出文件,application/database.php 第3步 导入数据,根目录 数据库文件.sql 第4步 运行目录指向public 第5步 登录后台,/admin 后台账号:admin 密码:admin
在线股票配资配资股票交易与牛股跟投带实盘策略的区块链整站源码 某站卖一千的在线股票配资配资股票交易与牛股跟投带实盘策略的区块链整站源码
2022-01-15 09:02:16 48.6MB 股票配资
Python股票量化投资课程——该资源需搭配下载part1-part3全部
1
Python股票量化投资课程——该资源需搭配下载part1-part3全部
2022-01-12 14:07:33 950MB python 量化投资 自动交易
1
Python股票量化投资课程——该资源需搭配下载part1-part3全部
2022-01-10 09:11:09 302.27MB python python量化投资 股票量化 自动交易
1
索引 内容 位置 阿布量化系统源代码 abupy目录 阿布量化使用教程 abupy_lecture目录 阿布量化非编程界面操作 abupy_ui目录 《量化交易之路》示例代码 ipython/python目录 《机器学习之路》示例代码 https://github.com/maxmon/abu_ml 特点 使用多种机器学习技术智能优化策略 在实盘中指导策略进行交易,提高策略的实盘效果,战胜市场 支持的投资市场: 美股,A股,港股 期货,期权 比特币,莱特币 工程设计目标: 分离基础策略和策略优化监督模块 提高灵活度和适配性 APP下载 & 网址 谢谢您来使用我们的应用! 电脑浏览器访问网址: https://www.abuquant.com iOS苹果手机AppStore下载链接 android手机下载链接页面 量化技术博客地址 K线课堂地址 量化课堂地址 APP简介 量化系统 阿布量化综合AI大数据系统, K线形态系统, 经典指标系统, 走势趋势分析系统, 时间序列维度系统, 统计概率系统, 传统均线系统对投资品种进行深度量化分析, 彻底跨越用户复杂的代码量化阶段, 更适合普通人群使用, 迈向量化2.0时代. 量化模型 上述系统中结合上百种子量化模型, 如: 金融时间序列损耗模型, 深度形态质量评估模型, 多空形态组合评定模型, 多头形态止损策略模型, 空头形态回补策略模型, 大数据K线形态历史组合拟合模型, 交易持仓心态模型, 多巴胺量化模型, 惯性残存阻力支撑模型, 多空互换报复概率模型, 强弱对抗模型, 趋势角度变化率模型, 联动分析模型, 时间序列的过激反应模型, 迟钝报复反应模型, 趋势启动速度模型, 配对对冲模型等. AI量化 阿布量化针对AI人工智能从底层开发算法, 构建适合量化体系的人工智能AI系统, 训练了数个从不同角度识别量化特征的评分模型,整体上分为三个系别:物理模型组、多巴胺生物模型组、量化形态模型组。不同系别模型群从不同角度(主要物理交易实体分析、人群心理、图表等三个方向)评估走势,系别的模型群是由若干个独有的识别算法和参数遗传淘汰,组成族群,加权投票评分. 量化策略 阿布量化结合了传统基于代码策的量化系统, 对未来择时信号发出时机的预判, 系统基于数百种简单种子交易策略,衍生出更多的量化交易策略新策略在这些种子基础上不断自我学习、自我成长,不断分裂,适者生存,淘汰选择机制下繁衍,目前应用的量化买入卖出信号策略共计18496种。 量化应用 阿布量化结合多种量化分析数据构建了数百种量化应用, 如: AI高能预警, AI高光时刻, 智能预测涨跌幅, 下跌五浪量化, 上涨五浪量化, 阻力支撑强度分析, 上升三角形突破, 下降三角形, 三重底 (头肩底), 三重顶 (头肩顶), 圆弧顶, 圆弧底, 乌云盖顶形态, 上升三部曲形态, 好友反攻形态, 单针探底形态, 射击之星形态, 多方炮形态, 上涨镊子线, 向上突破箱体, 跳空突破缺口, 黄金分割线量化, 趋势跟踪信号, 均值回复信号, 止损风险控制量化, 止盈利润保护量化, 综合指标分析等. 安装 部署 推荐使用Anaconda部署Python环境,详见 量化环境部署 测试 import abupy 界面操作(非编程) 更多界面操作示例 使用文档 1:择时策略的开发 第一节界面操作教程视频播放地址 择时策略决定什么时候买入投资品,回测告诉我们这种策略在历史数据中的模拟收益如何。 买入择时因子的编写 分解模式一步一步对策略进行回测 卖出择时因子的实现 在对的时间,遇见对的人(股票),是一种幸福 在对的时间,遇见错的人(股票),是一种悲伤 在错的时间,遇见对的人(股票),是一声叹息 在错的时间,遇见错的人(股票),是一种无奈 详细阅读 2: 择时策略的优化 通过止盈止损保护策略产生的利润,控制风险。 基本止盈止损策略 风险控制止损策略 利润保护止盈策略 详细阅读 3: 滑点策略与交易手续费 考虑应用交易策略时产生的成交价格偏差及手续费。 滑点买入卖出价格确定及策略实现 交易手续费的计算以及自定义手续费 type date symbol commission buy 20150423 usTSLA 8.22 buy 20150428 usTSLA 7.53 sell 20150622 usTSLA 8.22 buy 20150624 usTSLA 7.53 sell 20150706 usTSLA 7.53 sell 20150708 usTSLA 7.53 buy 20151230 usTSLA 7.22 sell 20160105 usTSLA 7.22 buy 20160315 usTSLA 5.57 sel
2021-12-22 18:01:51 55.89MB 实盘 量化系统 股票交易 期货系统
一、策略说明 策略指标:MACD策略 投资标的:国债期货T2006 初始资金:100000 开始日期:2020-01-14 运行天数:31 累计收益率:24.35% 策略逻辑: 采用10分种K线,通过MACD策略,如果macd出现金叉(柱状由绿变红),为多仓入场信号,进行平空仓与开多仓操作; 如果macd出现死叉(柱状由红变绿),为空仓入场信号,进行平多仓与开空仓操作。   二、基本面 国债期货跌幅扩大,10年期主力合约跌0.38%,5年期主力合约跌0.17%。 三、策略品种行情走势及操作信号 操作信号:今日(2020.2.14)13:39发出买入信号。14:19发出卖出信号。 操作明细:
2021-12-09 21:41:22 149KB macd macd金叉 国债期货
1
同花顺自动交易客户端,可以自动下单进行买入和卖出