强大的光学和SAR多传感器图像配准
2023-02-21 15:11:45 1.18MB 研究论文
1

给出一种新的神经网络——粗神经网络结构, 并给出了基于粗神经网络的多传感器数据融合
模型, 阐述了用于数据融合的粗神经网络的结构和训练方法。分析和仿真结果表明, 新模型不仅能解决
传统模型所能解决的问题, 而且能解决传感器输出为二值或一个范围的多传感器数据融合问题。

1
摘要:摘要:采用无线传感器网络技术和基于ARM+Linux的嵌入式系统架构,设计了一款室内空气质量监测系统,能对甲醛、PM2.5等空气品质因子进行现场数据采集,
2022-12-30 15:38:49 313KB 多传感器
1
分析并比较了多传感器联合概率数据协会(MSJPDA)跟踪算法的并行和顺序实现。 开发了两种用于比较多传感器概率数据关联过滤器的非仿真技术,并用于比较算法的顺序和并行实现的跟踪性能。 已显示非仿真技术可以准确预测在仿真中观察到的性能趋势,也就是说,按顺序执行可在RMS位置误差和跟踪寿命方面提供更好的跟踪性能。 对于顺序实施,还简要解决了不同传感器的处理顺序问题。 我们还表明,随着传感器数量的增加,顺序实现的计算复杂度将降低。 因此,当不需要数据关联例程时,顺序和并行实现在多传感器过滤中是等效的,而当需要数据关联时,顺序实现则提供了出色的跟踪性能。
2022-12-10 10:32:29 503KB 论文研究
1
计算机视觉、激光雷达-相机多传感器融合、相机标定的坐标系描述图
2022-12-05 13:26:16 96KB 计算机视觉 slam
1
Bayes统计理论 基于经典统计方法的多传感器数据处理。 经典统计理论的两个特征: 不采用先验概率; 概率是一种类似频数的解释。 经典统计理论的基本原理:小概率原理。 经典统计理论的不足: 将被测参数看做一个固定值,没有充分利用其先验信息; 精度和信度是预定的,不依赖于样本。
2022-11-04 11:35:30 2.97MB 课件 数据采集 融合处理
1

针对被动传感器观测的非线性问题,将无迹变换引入卡尔曼滤波算法中.进一步,针对其弱可观测性,采用多个被动传感器集中式融合跟踪策略,提出了基于无迹卡尔曼滤波的被动多传感器融合跟踪算法.以3个被动站跟踪为例进行仿真研究,结果表明所提出的算法可达到比经典的扩展卡尔曼滤波算法更高阶的跟踪精度.

1
论文研究-基于Bayes估计的多传感器数据融合方法研究.pdf,  对多传感器数据融合方法进行研究 ,以 Bayes估计理论为基础得到了多传感器最优融合数据 ,并将它与其它方法得到的融合数据进行了比较 .
2022-09-13 10:59:59 165KB 论文研究
1