广东工业大学数据结构实验和课程设计 1.实验:抽像数据类型——树 基本操作描述 树的结构定义和树的一组基本操作: ADT Tree{ 数据对象D:D是具有相同特性的数据元素的集合。 数据关系R: 若D为空集,则称为空树; 若D仅含有一个数据元素,则R为空集,否则R={H},H是如下二元关系: (1) 在D中存在唯一的称为根的数据元素root,它在关系H下无前驱; (2) 若D-{root}≠NULL,则存在D-{root}的一个划分D1,D2,D3, …,Dm(m>0),对于任意j≠k(1≤j,k≤m)有Dj∩Dk=NULL,且对任意的i(1≤i≤m),唯一存在数据元素xi∈Di有∈H; (3) 对应于D-{root}的划分,H-{,…,}有唯一的一个划分H1,H2,…,Hm(m>0),对任意j≠k(1≤j,k≤m)有Hj∩Hk=NULL,且对任意i(1≤i≤m),Hi是Di上的二元关系,(Di,{Hi})是一棵符合本定义的树,称为根root的子树。 基本操作P: InitTree(&T); 操作结果:构造空树T。 DestroyTree(&T); 初始条件:树T存在。 操作结果:销毁树T。 CreateTree(&T,definition); 初始条件:definition给出树T的定义。 操作结果:按definition构造树T。 ClearTree(&T); 初始条件:树T存在。 操作结果:将树T清为空树。 TreeEmpty(T); 初始条件:树T存在。 操作结果:若T为空树,则返回TRUE,否则返回FALSE。 TreeDepth(T); 初始条件:树T存在。 操作结果:返回T的深度。 Root(T); 初始条件:树T存在。 操作结果:返回T的根。 Value(T,cur_e); 初始条件:树T存在,cur_e是T中某个结点。 操作结果:返回cur_e的值。 Assign(T,cur_e,value); 初始条件:树T存在,cur_e是T中某个结点。 操作结果:结点cur_e赋值为value。 Parent(T,cur_e); 初始条件:树T存在,cur_e是T中某个结点。 操作结果:若cur_e是T的非根结点,则返回它的双亲,否则函数值为“空”。 LeftChild(T,cur_e); 初始条件:树T存在,cur_e是T中某个结点。 操作结果:若cur_e是T的非叶子结点,则返回它的最左孩子,否则返回“空”。 RightSibling(T,cur_e); 初始条件:树T存在,cur_e是T中某个结点。 操作结果:若cur_e有右兄弟,则返回它的右兄弟,否则返回“空”。 InsertChild(&T,&p,I,c); 初始条件:树T存在,p指向T中某个结点,1≤i≤p指结点的度+1,非空树c与T不相交。 操作结果:插入c为T中p指结点的第i棵子树。 DeleteChild(&T,&p,i); 初始条件:树T存在,p指向T中某个结点,1≤i≤p指结点的度。 操作结果:删除T中p所指结点的第i棵子树。 TraverseTree(T,visit()); 初始条件:树T存在,visit是对结点操作的应用函数。 操作结果:按某种次序对T的每个结点调用函数visit()一次且至多一次。一旦visit()失败,则操作失败。 }ADT Tree 在双亲表存储结构中添加以下基本抽象数据类型: Status Print(PTree T); 附加函数:用于显示树的所有内容。 初始条件:树T存在; 操作结果:将树T的所有结点显示出来。 在双亲表存储结构中,TraverseTree(T,visit())函数是按层次次序对T的每个结点进行访问的。 2.课程设计:哈夫曼编/译码器 基本要求 一个完整的系统应具有以下功能: (1)I:初始化(Initialization)。从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树,并将它存于文件hfmTree中。 (2)E:编码(Encoding)。利用已建好的哈夫曼树(如不在内存,则从文件htmTree中读入),对文件ToBeTran中的正文进行编码,然后将结果存入文件CodeFile中。 (3)D:译码(Decoding)。利用已建好的哈夫曼树将文件CodeFile中的代码进行译码,结果存入文件TextFile中。 (4)P:印代码文件(Print)。将文件CodeFile以紧凑格式显示在终端上,每行50个代码。同时将此字符形式的编码写入文件CodePrint中。 (5)T:印哈夫曼树(Tree Printing)。将已在内存中的哈夫曼树以直观的方式(树或凹入表形式)显示在终端上,同时将此字符形式的哈夫曼树写入文件TreePrint中。 内包含完整正确的代码和实验报告&课程设计报告,希望对大家有所帮助。
1
文档是关于数据结构的课程设计——哈夫曼编/译码器,附有源码
2021-12-02 00:09:25 98KB 哈夫曼编/译码器
1
数据结构课程设计哈夫曼编译码器,里面比较齐全,实验报告、源程序、调试过程,而且此程序为通用程序,无任何个人信息,懒得装VC6.0的直接改个名字学号就可以交了
2021-12-01 23:56:04 425KB 哈夫曼编译码器
1
用C++实现的哈夫曼编译码器,可以实现创建哈夫曼树、对txt文件进行编码、译码,也可以查看生成的哈夫曼树。
2021-11-20 15:02:11 6.17MB 哈夫曼编码
1
数据结构C 语言哈夫曼编译码基本实现
2021-11-11 16:06:02 3KB 哈夫曼编译码
数据结构C 语言哈夫曼编译码扩展内容实现 haffman.c 完整代码code.c
哈夫曼编译码器课程设计报告(完整版)--30页.pdf
2021-09-06 17:15:54 578KB 哈夫曼编译码器课程设计
1
哈夫曼编译码器:根据给出的英文字母的使用频度建立哈夫曼树,并利用已经建好的哈夫曼树完成对电报的 1、编码 2、译码 3、打印编码 4、打印哈夫曼树 等四个功能。 (含报告、答辩视频)
2021-07-17 09:05:01 67.67MB 哈夫曼 编码译码 哈夫曼树
[ 问题描述 ] 利用哈夫曼编码进行信息通讯可以大大提高信道利用率, 缩短信息传输时间,降低传输成本。但是, 这要求在发送端通过一个编码系统对待传数据预先编码; 在接收端将传来的数据进行译码( 复原 )。对于双工信道( 即可以双向传输信息的信道 ), 每端都需要一个完整的编/译码系统。试为这样的信息收发站写一个哈夫曼码的编译码系统。 [ 基本要求 ] 一个完整的系统应具有以下功能: (1) I:初始化(Initialization)。从终端读入字符集大小 n,及 n 个字符和 n 个权值,建立哈夫曼树, 并将它存于文件 hfmtree 中。 (2) C:编码(Coding)。利用已建好的哈夫曼树(如不在内存, 则从文件 hfmtree 中读入), 对文件 tobetrans 中的正文进行编码, 然后将结果存入 codefile 中。 (3) D:译码(Decoding)。利用已建好的哈夫曼树将文件 codefile 中的代码进行译码, 结果存入文件 textfile 中。 (4) P:印代码文件(Print)。将文件 codefile 以紧凑格式显示在终端上, 每行 50 个代码。同时将此字符形式的编码文件写入文件 codeprint 中。 (5) T:印哈夫曼树(Tree print)。将已在内存中的哈夫曼树以直观的方式( 树或凹入表行式 )显示在终端上, 同时将此字符形式的哈夫曼树写入文件 treeprint 中。 [ 测试数据 ] (1)利用教科书 6-2 中的数据调试程序。 (2)用下表中给出的字符集和频度的实际统计数据建立哈夫曼树, 并实现以下报 文的编码和译码: "THIS PROGRAM IS MY FAVORITE". 字符 A B C D E F G H I J 频度 186 64 13 22 32 103 21 15 47 57 1 字符 K L M N O P Q R S T U 频度 5 32 20 57 63 15 1 48 51 80 23 字符 V W X Y Z 频度 8 18 1 16 1 [ 实现提示 ] (1) 文件 codefile 的基类型可以设为子界型 bit=0..1。 (2) 用户界面可以设计为"菜单"方式: 显示上述功能符号, 再加上"E",表示结束运行 End, 请用户键入一个选择功能符。此功能执行完毕后再显示此菜单, 直至某次用户选择了 "E"为止。 (3) 在程序的一次执行过程中, 第一次执行 I,D 或 C 命令之后, 哈符曼树已经在内存了, 不必再读入。每次执行中不一定执行 I 命令, 因为文件 hfmtree 可能早己建好。 [ 选作内容 ] (1) 上述 codefile 的基类型实际上占用了存放一个整数的空间, 只起到示意或模拟的作用。现使 codefile 的基类型 package=integer, 把哈夫曼码紧缩到一个整型变量中去, 最大限度地利用码点存储能力, 试改写你的系统。 (2) 修改你的系统, 实现对你的系统的源程序的编码和译码。( 主要是将行尾符编/译码问题 ) (3) 实现各个转换操作的源/目文件, 均由用户在选择此操作时指定。
2021-07-16 12:09:57 25KB codeblocks
1
数据结构课程设计
2021-05-23 09:02:58 68.65MB c++ c 课程设计 哈夫曼编译码
1