LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是美国国家仪器公司(NI)开发的一款图形化编程环境,专门用于创建虚拟仪器。在这个“LabVIEW例子之从Excel读数据”中,我们探讨的是如何利用LabVIEW与Microsoft Excel进行交互,读取Excel文件中的数据,并将这些数据以波形图的形式进行可视化展示。 我们需要了解LabVIEW中的VI(Virtual Instrument)概念。VI是LabVIEW的基本构建单元,相当于传统编程语言中的函数或子程序。它由前面板和程序框图两部分组成。前面板是用户界面,用户可以通过控件(如按钮、指示器)与VI进行交互;程序框图则是实际的代码逻辑,由各种功能节点和连线构成。 在本例中,我们关注的重点是如何在程序框图中实现从Excel文件中读取数据。这通常需要使用LabVIEW的“Excel文件读取”VIs(虚拟仪器),它们提供了与Excel API的接口。你需要加载Excel VIs库,然后可以使用“打开工作簿”函数来打开一个Excel文件。这个函数需要输入文件路径,返回一个引用,这个引用可以用来后续访问工作簿中的数据。 接着,通过“获取单元格”或“获取范围”函数,你可以读取Excel工作表中的数据。这些函数需要工作簿引用、工作表名称和单元格或范围坐标作为参数。你可以根据需要选择读取单个单元格、一整行、一整列或者指定范围的数据。 一旦获取了数据,下一步就是将其转换为LabVIEW可以处理的数据类型,通常是数组。LabVIEW支持多种数据类型,包括数值、字符串等,所以需要根据Excel数据的实际情况进行转换。对于本例中的波形显示,假设数据是数值型的,可能需要创建一个双精度浮点数数组。 使用LabVIEW的“波形图表”控件,将数据绘制为波形。你可以通过设置波形图表的属性,如X轴和Y轴的范围、刻度、标签等,来定制图表的显示效果。添加“更新波形图表”函数,将数据数组连接到波形图表的输入,就能实时更新图表,显示从Excel文件读取的数据。 总结来说,这个LabVIEW示例展示了如何利用LabVIEW的Excel接口读取数据,并将这些数据以图形化方式呈现,这对于数据分析和实验数据可视化非常有帮助。理解并掌握这一技术,可以扩展LabVIEW在处理和展示来自Excel的数据时的能力,提高工作效率。在实际应用中,还可以结合其他LabVIEW功能,如数据处理、控制逻辑等,实现更复杂的系统集成。
2026-01-05 15:01:01 15KB
1
针对电容式MEMS陀螺,设计了一种高精度CMOS接口读出电路。从理论上分析了接口寄生电容、器件的不匹配对接口电路的影响,采用连续时间电压读出方式的检测方法,设计了一款带有输入输出共模反馈的低噪声全差分电荷运算放大器,输入输出共模电压稳定在2.5 V,输人端的噪声电压为9 nV。载波调制技术用来消除低频闪烁噪声。在Cadence中对设计的接口电路进行仿真分析,并采用PCB电路板进行了实验。结果显示所提出的接口电路不仅消除了大部分寄生电容的影响,抑制了大部分的耦合信号和噪声信号,而且减小了由于器件的不匹配产生
2026-01-05 13:46:07 291KB 工程技术 论文
1
购买新中新DKQ-A16D二三代阅读器驱动原始光盘有用的
2026-01-04 21:48:08 54.67MB ID读卡器
1
易语言管理菜单源码,管理菜单,读回窗口位置,将被销毁保存位置,方向,鼠标是否在窗口范围内,窗口处理函数,计时器清零,显示列表框图标,ianz_添加工具_被选择,取鼠标位置_,取窗口矩形_,是否在矩形内_,设置窗口信息_,呼叫窗口函数地址_,复制内存_,复制内存1_,查找
1
易语言管理工具界面源码,管理工具界面,读回窗口位置,将被销毁保存位置,方向,鼠标是否在窗口范围内,窗口处理函数,计时器清零,显示列表框图标,ianz_添加工具_被选择,取鼠标位置_,取窗口矩形_,是否在矩形内_,设置窗口信息_,呼叫窗口函数地址_,复制内存_,复制内存
1
STM32F103C8T6 MCU 越来越广泛的应用在生产生活的各个领域,外接丰富的传感器、功能模块、通信 模块、显示存储等可以形成各种可样的产品项目应用。对于功耗要求比较高的产品,一般会选择 STM32L 系 列的 MCU,但是从功耗的评测角度,逻辑上是基本相似的。 在很多应用场合中都对电子设备的功耗要求非常苛刻,如某些传感器信息采集设备,仅靠小型的电池提供电源, 要求工作长达数年之久,且期间不需要任何维护。由于智能穿戴设备的小型化要求,电池体积不能太大导致容量也比 较小,所以也很有必要从控制功耗入手,提高设备的续航时间。其实,只要是涉及到便携式的产品,都免不了要使用 电池作为电源,否则,如果还是需要接一个插头使用市电来供电的话,那就无法称之为便携式了,比如手机、运动手 环、蓝牙耳机、智能手表等都是类似的。所以控制功耗和提高产品的续航时间就显得尤为重要。 在当今快速发展的电子产品市场中,便携式设备如智能穿戴设备、传感器采集设备、手机、蓝牙耳机等因其便利性和实用性变得极为普及。这些设备的共同特点是都必须具备较长的续航能力,而这在很大程度上依赖于其内部微控制器(MCU)的功耗性能。本文将深入分析STM32F103C8T6 MCU的功耗特性,并探讨如何通过不同的手段来优化其功耗,从而延长设备的工作时间。 STM32F103C8T6作为STMicroelectronics(意法半导体)的一款经典MCU,广泛应用于各种产品中。它以其丰富的外设接口和较高的性能而被广泛采用。然而,在对功耗有严格要求的应用中,如长时间无人维护的传感器设备或电池供电的智能穿戴设备,对MCU的功耗特性要求就变得尤为关键。 针对这些需求,STM32F103C8T6提供了一系列的低功耗模式,包括运行模式、睡眠模式、停止模式和待机模式。运行模式下,MCU的所有组件均在工作状态,此时功耗最高。当系统不需要持续处理任务时,可以切换到睡眠模式,此时核心停止工作,但外设和系统时钟仍在运行,为快速响应外部事件做好准备。一旦检测到中断或特定事件,MCU将从睡眠状态被唤醒,继续处理任务,然后再返回睡眠状态。在停止模式下,大部分外设和系统时钟被关闭,但RAM内容得以保留,这有助于在不牺牲太多性能的情况下进一步降低功耗。而待机模式则是最省电的状态,所有电源几乎全部关闭,仅保留实时时钟(RTC)和唤醒电路,以便在有需要时唤醒MCU。 为了在特定场景中选择恰当的低功耗模式,开发人员需要对应用场景有深刻理解。例如,在需要设备响应充电事件的场景中,停止模式会是更好的选择,因为它能保持对外部充电事件的响应性。通过硬件设计,如RC延时电路,将充电状态转换为脉冲信号,可以辅助MCU区分充电和按键唤醒事件,从而进行正确的模式切换。 进行功耗测评时,核心的指标是MCU在不同低功耗模式下的电流消耗。这些数据对于计算设备的实际续航时间至关重要。通过对电流消耗的精确测量与分析,开发者可以识别出功耗瓶颈所在,并据此进行硬件或软件上的优化。例如,合理利用低功耗模式、减少不必要的外设活动、优化中断处理逻辑、调整电源管理策略等,都能够有效降低功耗。 功耗测评和优化不仅仅局限于MCU本身。整个硬件设计和软件编程过程中都应考虑功耗因素,以确保产品在各种工作环境和条件下均能表现出良好的能效比。在软件层面,开发者应编写高效的代码,减少不必要的计算和外设活动。同时,在硬件层面,可以选择合适的低功耗组件,合理布局电路,减少信号传输路径中的能量损耗。 总结而言,STM32F103C8T6的功耗测评和优化是确保便携式设备成功应对市场挑战的关键环节。对MCU的低功耗模式有深入理解,并结合软硬件的综合优化,可以显著提升设备的续航时间,进而提高产品的市场竞争力。随着技术的不断进步,相信未来STM32F103C8T6及其衍生产品的功耗性能将得到进一步提升,为各种应用场景提供更加长久稳定的动力支持。
2025-12-31 14:11:40 1.2MB STM32F103C8T6 续航时间
1
在IT行业中,尤其是在医疗信息化领域,读卡和电子凭证技术起着至关重要的作用。这个名为“读卡和电子凭证动态库2021-09-06).rar”的压缩包文件似乎包含了与C#编程语言相关的资源,用于封装国家医保供PB(可能是指Progress BusinessBuilder)调用。下面我们将深入探讨这些关键知识点。 我们要理解“读卡”在医疗领域的含义。在医疗信息系统中,读卡通常指的是读取患者身份证、社保卡或其他含有个人信息的智能卡。这些卡片往往带有RFID(无线频率识别)芯片,能够快速读取并验证持卡人的身份,提高医疗服务的效率和准确性。读卡技术的应用可以减少人为错误,确保患者信息的安全。 接着,"读卡冲突"是一个常见的问题,特别是在多用户同时操作的情况下。当多个读卡器同时尝试读取卡片时,可能会出现信号干扰或数据混乱。解决这个问题通常需要优化读卡器的通信协议,设置合适的读卡范围,或者采用冲突检测和解决算法。在C#中,开发者可以利用事件驱动编程和多线程技术来处理这类并发问题。 读卡器是硬件设备,用于读取智能卡中的数据。它们通常通过USB接口与计算机连接,并提供API(应用程序编程接口)供软件调用。在C#中,可以使用.NET Framework的System.SmartCard命名空间来与读卡器进行交互,实现读卡功能。开发者需要了解读卡器的特定驱动程序和协议,以便正确地初始化、控制和接收来自读卡器的数据。 电子凭证是医疗领域中的另一种关键技术。它是指以电子形式存储的医疗凭证,如发票、收据或报销单等。电子凭证有助于减少纸质文件的使用,提高数据的存储和检索效率,同时便于进行数据分析和审计。在C#中,可以使用XML、JSON或其他数据格式来表示电子凭证,并通过加密、数字签名等手段确保其安全性和完整性。 至于“c#封装国家医保供PB调用”,这表明开发人员可能正在创建一个C#库,用于包装与国家医保系统交互的接口,供Progress BusinessBuilder使用。PB是一种业务流程开发工具,它允许开发人员创建和运行复杂的业务逻辑。在C#中创建这样的封装库,可以简化PB对医保系统的访问,提供统一的调用接口,从而降低系统集成的复杂性。 这个压缩包可能包含了一些关键的代码示例、配置文件或文档,用于指导开发者如何在C#环境中处理读卡冲突、操作读卡器以及与国家医保系统进行通信。理解这些技术点对于开发医疗信息化应用是至关重要的,特别是涉及到患者身份验证、费用结算和数据交换的场景。
2025-12-30 21:59:39 14.85MB
1
在IT行业中,二次开发是指基于现有产品或框架进行定制化开发,以满足特定用户或应用场景的需求。本案例中,"明华RD系列读卡器的C#版本二次开发范例"是一个面向开发者提供的示例项目,它展示了如何利用C#编程语言对明华RD系列读卡器进行功能扩展和定制。 明华RD系列读卡器是一款常见的智能卡读写设备,广泛应用于身份验证、门禁控制、数据传输等领域。它们支持多种类型的智能卡,如IC卡、ID卡、CPU卡等,能够读取和写入卡片上的数据。在C#环境下进行二次开发,意味着开发者可以利用.NET Framework提供的丰富库和工具,创建自定义的应用程序来与读卡器交互,实现如读取卡片信息、写入数据、模拟交易等操作。 在C#.NET开发中,通常会用到以下知识点: 1. **串口通信**:明华RD系列读卡器通过串行端口(COM口)与计算机通信。开发者需要了解如何在C#中设置串口参数(如波特率、数据位、停止位、校验位),并实现数据的发送和接收。 2. **System.IO.Ports命名空间**:这是.NET Framework提供的用于处理串口通信的类库。开发者将使用`SerialPort`类来创建和配置串口对象,实现与读卡器的连接和数据交换。 3. **事件驱动编程**:`SerialPort`类提供了如`DataReceived`事件,当接收到数据时触发,便于实时处理来自读卡器的数据。 4. **数据解析**:读卡器返回的数据通常遵循特定的协议格式,如ISO 7816或厂商自定义协议。开发者需要理解这些协议,编写代码来解析接收到的数据,提取所需信息。 5. **错误处理**:在串口通信中,可能会遇到各种异常,如连接失败、数据传输错误等。开发者需要编写合适的异常处理代码,确保程序的稳定性和可靠性。 6. **多线程编程**:为了保证用户界面的响应性,通常会在后台线程中进行串口通信操作。使用`Task`或`BackgroundWorker`组件可以帮助实现异步处理。 7. **控件集成**:在Windows Forms或WPF应用中,可能需要将读卡器的操作集成到UI界面,如按钮点击触发读卡,显示读取结果等。 8. **安全性和认证**:在涉及到敏感信息(如个人身份信息)的读卡应用中,必须考虑数据加密和安全认证机制,防止数据泄露。 9. **API调用**:明华公司可能提供了SDK(Software Development Kit)或API接口,包含了一些预定义的函数和方法,简化了开发者的工作。学习和理解这些API是二次开发的关键。 10. **文档阅读**:明华公司的二次开发范例通常会附带详细的开发文档,包括接口说明、使用示例和故障排查指南。仔细阅读和理解这些文档,对于成功进行二次开发至关重要。 "明华RD系列读卡器的C#版本二次开发范例"为开发者提供了一个起点,帮助他们快速理解和掌握如何在C#环境中与读卡器进行有效通信,开发出符合实际需求的应用程序。通过深入学习和实践,开发者可以进一步提升自己的技能,应对更复杂的系统集成挑战。
2025-12-09 09:33:34 31KB RD系列 二次开发
1
博优加密狗读狗工具。NT77加密狗读狗工具。识别码,登陆密码,序列号磐石NT77。博优商贸通,博优专卖
2025-12-03 14:11:46 430KB
1
随着人工智能技术的快速发展,计算机视觉领域的研究与应用也在不断拓展和深化。其中,目标检测作为计算机视觉的核心任务之一,在各个行业中扮演着越来越重要的角色。特别是在军事领域,目标检测技术可以应用于军事车辆的识别、跟踪以及分析等,这对于提高军事侦察能力和快速反应能力具有重要意义。因此,针对军事车辆的目标检测数据集就显得尤为关键。 《深读CV 第72期》发布的“Military Dataset: 军事车辆目标检测数据集”正是为了满足这一需求。该数据集是专门针对军事车辆进行目标检测而设计的,旨在为研究者提供一个高质量的训练和测试平台,帮助他们开发更为准确和高效的检测算法。通过这个数据集,研究者可以更深入地分析和理解军事车辆的特征,从而优化算法在实际应用中的表现。 该数据集包含了大量经过精心标注的军事车辆图片,这些图片涵盖了多种不同类型的军事车辆,如坦克、装甲车、军用卡车等,其应用场景也涵盖了战场、训练场以及城市和乡村等多种复杂环境。图片的标注工作严格遵循目标检测的标准流程,详细记录了每辆车的位置、类别以及必要的属性信息,确保了数据集的质量和实用性。 使用这样的数据集,研究者不仅可以针对军事车辆的外观特征进行深度学习和模式识别,还能够探索如何在不同的环境下,如夜间、恶劣天气或伪装条件下,进行有效的目标检测。此外,该数据集还可用于开发新的算法,提高检测的准确性、速度和鲁棒性,尤其是在对抗电子干扰和物理遮挡等复杂情况时。 除了上述功能,这一数据集还能够促进人工智能技术在军事领域的跨学科合作。通过公开发布数据集,研究者、开发者和军事专家可以共同参与到数据集的完善、算法的设计和应用场景的探索中来,从而加速军事人工智能技术的创新和应用。 数据集的多样性和实用性使其成为研究目标检测技术的重要工具。它不仅提供了足够的样本量来支持深度学习模型的训练,还具有足够的多样性以适应不同的实际应用需求。这为人工智能研究者和工程师提供了一个宝贵的资源,有助于他们开发出更为先进的军事车辆检测系统。 随着人工智能在军事应用中的不断深入,如何确保技术的安全性和道德性也是必须考虑的问题。数据集的开发和应用应当遵循相关的法律法规和伦理标准,确保技术的进步不会带来不可控的风险。随着技术的不断发展,我们期待有更多高质量的数据集问世,为人工智能技术在军事领域的健康发展做出贡献。
2025-11-24 13:50:07 22.4MB 数据集
1