灰色预测模型发电量预测matlab代码.zip
2021-08-08 16:04:01 2KB matlab
受天气状况、辐照度、温度、湿度等气象因素的影响,光伏系统的输出具有很强的非线性和非平稳性的特点,光伏发电量预测精度较低。该文根据光伏系统的历史发电数据和实际气象数据,采用模糊识别与RBF神经网络相结合的方法,实现光伏系统发电量的短期预测。首先对影响预测结果的气象因素进行分析,然后按天气类型进行分类,对不同的天气类型分别建立模型进行训练,最后利用此模型预测未来的光伏系统发电量,并通过实验仿真验证。预测结果表明,该方法不但减少了模型所需样本数量而且提高了预测的精度,具有一定的科研价值。
1
接上文,本文介绍了CNN-LSTM模型实现单、多变量多时间步预测的家庭用电量预测任务。 文章目录1. CNN-LSTM1.1 CNN 模型1.2 完整代码 1. CNN-LSTM 1.1 CNN 模型 卷积神经网络(CNN)可用作编码器-解码器结构中的编码器。 CNN不直接支持序列输入;相反,一维CNN能够读取序列输入并自动学习显着特征。然后可以由LSTM解码器解释这些内容。CNN和LSTM的混合模型称为CNN-LSTM模型,在编码器-解码器结构中一起使用。CNN希望输入的数据具有与LSTM模型相同的3D结构,尽管将多个特征作为不同的通道读取,但效果相同。 为简化示例,重点放在具有单变量输
2021-03-04 17:56:37 44KB 时间序列
1