在相位恢复过程中, 用图像的稀疏性作为先验知识可以提高图像的重构质量。结合图像在小波域的组稀疏性与图像自身的梯度稀疏性, 针对编码衍射图样模型, 提出一种融合正交小波db10和sym4组稀疏性与全变差正则化的相位恢复算法。针对当前相位恢复算法重构时间较长的问题, 采用复合分裂算法将非凸优化问题分解成几个易于求解的子问题(包括两个组硬阈值算子和全变差最小化)进行求解, 减少了图像重构时间。实验结果表明:在高斯噪声下, 与BM3D-PRGAMP算法相比, 所提算法重构图像的峰值信噪比提高了约0.8 dB, 重构时间缩短了90%;在泊松模型中, 所提算法也具有较大优势, 充分说明了所提算法对噪声具有稳健性。
2021-11-14 23:10:26 3.93MB 光计算 相位恢复 编码衍射 组稀疏
1
程序算法来自2009有关反问题的文章《A fast algorithm for the total variation model of image denoising》
2021-09-07 16:23:09 4KB 全变差正则化
1
Variational Image Restoration and Segmentation by by Pascal Getreuer . http://www.mathworks.com/matlabcentral/fileexchange/29743-tvreg-variational-image-restoration-and-segmentation
2021-08-20 13:06:35 619KB 全变差 正则化
1
全变差去噪matlab代码令人敬畏的低光图像增强 论文和代码 评论与相关工作 [2021 IJCV ]基准微光图像增强及超越 [2020 IEEE ACCESS ]基于实验的弱光图像增强方法综述 基于HE的算法 去做 基于Retinex的算法 [2020年提示] LR3M:通过低阶正则化Retinex模型进行鲁棒的微光增强 [2018技巧]通过稳健的Retinex模型揭示结构的微光图像增强 [2016 CVPR ] MF:同时反射率和照度估计的加权变分模型 [2017提示] LIME:通过照明贴图估计进行低光图像增强 基于降噪的算法 去做 监督深度学习算法 [2021技巧]稀疏的梯度正则化深度Retinex网络,用于鲁棒的弱光图像增强() [2020 CVPR ]学习通过分解和增强来还原弱光图像 [2019预印本]注意引导的微光图像增强 [2018 BMVC ] Retinex-Net:用于弱光增强的深度Retinex分解 [2018 FG ] GLADNet:具有全球意识的弱光增强网络 [2018 CVPR ]学习在黑暗中看 半监督深度学习算法 [2020 CVPR ] DRBN:从
2021-08-02 18:13:38 3KB 系统开源
1
针对传统重建算法对火焰重建精度低、重建速度慢的问题,提出了基于正则先验的全变差代数迭代(ARTTV)算法,以提高对称与非对称火焰的重建精度。同时,为了提高重建速度,建立了基于“ARTTV-粒子群算法(PSO)内核”的极限学习机(ELM)神经网络,该神经网络具有与迭代算法近乎相同的重建能力,同时又具有超过迭代算法约300倍的重建速度。
2021-03-12 21:41:57 7.71MB 测量 辐射层析 非对称火 迭代算法
1
实现全变差去噪(split bregman)使用opencv实现
2019-12-21 20:37:35 5.27MB 全变差 去噪
1
FTVd全变差去模糊(opencv实现)
2019-12-21 20:37:35 5.64MB FTVd 全变差去模糊
1