本书系统探讨人工智能在药物开发、精准医学和医疗保健中的核心应用。从机器学习、深度学习到自然语言处理,书中融合统计学与算法思维,解析AI在疾病诊断、临床试验优化及患者管理中的创新实践。作者提出基于相似性原则的AI框架,并通过R语言实例展示模型实现,兼顾理论深度与实用价值。全书不仅覆盖CNN、RNN、贝叶斯网络等主流方法,还前瞻性地探讨通用人工智能(AGI)的发展路径与哲学挑战,为科研人员与行业从业者提供兼具广度与深度的权威指南。
2025-10-09 17:39:48 59.7MB 人工智能 精准医疗
1
ZYNQ UltraScale+ MPSoc ZU5EV核心板原理图, Zynq UltraScale+MPSoC是Xilinx推出的第二代多处理SoC系统,它在第一代Zynq-7000的基础上进行了全面升级。 该芯片基于业内最先进的16nm FinFET+工艺制程打造,整合了64位ARM Cortex-A53处理器、512位ARM Mali-400 MP2图形处理器以及可编程逻辑单元,具有强大的计算能力和强大的扩展性,广泛应用于工业自动化、人工智能、无人驾驶等领域。 Zynq UltraScale+ MPSoC共有四个大的系列:CG系列、EG系列、EV系列和RF系列。 其中,EG和EV系列提供汽车级和军品级器件,具有更高的安全性能和可靠性。 相较于上一代ZYNQ-7000产品,该系列器件在性能、存储和互联等方面都实现了重大突破,主要有: 1、CPU性能得到显著提升,采用了64位四核1.3GHz Cortex-A53 APU(CG系列是双核)和可运行在独立、锁步模式的双核533MHz Cortex-R5 RPU,具有强大的计算能力和扩展性; 2、静态存储采用了高达36Mb的高
2025-10-08 21:57:27 329KB arm 人工智能
1
深度学习在图像检索领域的应用是人工智能技术的一个重要分支,它通过模仿人类大脑的神经网络结构来分析和理解图像内容,从而实现对大量图像数据的有效管理和检索。深度学习模型,如卷积神经网络(CNN),在图像分类、目标检测和图像检索等任务中取得了革命性的进展。 在图像检索方面,深度学习模型能够提取图像的深层次特征,这些特征比传统的图像特征更加丰富和具有区分性,使得相似或相关的图像能够被有效地区分和检索出来。图像检索系统通常包括特征提取、特征存储、相似度计算和结果排名几个关键步骤。通过训练深度学习模型,可以从图像数据中自动学习到这些特征,无需人工设计特定的特征提取算法。 具体到本次的项目,我们可以看到包含多个关键文件,如screenshots可能包含项目运行时的截图,app_cbir.py可能是一个实现基于内容的图像检索(Content-Based Image Retrieval, CBIR)的应用程序。data文件夹可能包含用于训练和测试模型的数据集,compute_fea_for_cbir.py可能包含了提取用于CBIR特征的代码逻辑。dump_data_to_pkl.py和dump_lsh_to_pkl.py可能用于数据预处理和存储,models文件夹用于存放训练好的模型文件,而README.md文件则提供了整个项目的文档说明。 在深度学习模型的设计和训练过程中,可能会涉及到对大量图像数据的预处理,如调整图像尺寸、归一化、增强等步骤,以保证输入模型的图像数据具有一致性和高质量。此外,模型的训练过程需要大量的计算资源,通常在GPU或TPU上进行,以加速模型的训练效率。 通过深度学习模型在图像检索中的应用,可以实现更为智能和准确的图像检索系统,广泛应用于互联网搜索引擎、医学影像分析、安防监控等领域。这些系统能够帮助用户快速找到他们所需的内容,大大提高了工作效率和信息检索的准确性。 此外,基于深度学习的图像检索技术还在不断发展中,研究者们正致力于改进算法效率、减少模型体积、提升检索性能,以及探索更多的应用场景。随着技术的不断进步,深度学习在未来图像检索中的应用将更加广泛和深入。
2025-10-08 20:52:00 122.25MB 深度学习 毕业设计 课程设计 人工智能
1
内容概要:本书《Agentic Design Patterns》系统介绍了构建智能AI代理系统的核心设计模式,涵盖提示链、路由、并行化、反思、工具使用、规划、多代理协作、记忆管理、异常处理、人机协同、知识检索(RAG)、代理间通信等关键技术。通过结合Google ADK等实际代码示例,深入讲解了如何构建具备自主决策、动态适应与容错能力的智能体系统,并强调了在金融、医疗等高风险领域中责任、透明度与可信度的重要性。书中还探讨了大模型作为推理引擎的内在机制及其在代理系统中的核心作用。; 适合人群:具备一定AI和编程基础的研发人员、系统架构师、技术负责人,尤其是从事智能系统、自动化流程或AI产品开发的1-3年经验从业者;对AI代理、多智能体系统感兴趣的进阶学习者也适用。; 使用场景及目标:① 掌握如何设计高效、可靠、可扩展的AI代理系统;② 学习在复杂任务中应用并行执行、错误恢复、人机协同等关键模式;③ 理解大语言模型作为“思维引擎”的工作原理及其在智能体中的角色;④ 构建适用于金融、客服、自动化运维等现实场景的鲁棒AI系统。; 阅读建议:本书以实践为导向,建议读者结合代码示例动手实操,尤其关注ADK框架下的代理构建方式。学习过程中应注重理解设计模式背后的原则而非仅复制代码,并思考如何将这些模式应用于自身业务场景中,同时重视系统安全性、伦理规范与工程稳健性。
2025-10-08 16:23:44 18.02MB Multi-Agent System Design
1
2025年,随着人工智能技术的飞速发展,DeepSeek公司凭借其在技术创新、应用拓展、产业发展等方面的表现,成为工业人工智能领域的引领者。技术创新方面,DeepSeek通过优化算法架构显著提升了算力利用效率,打破了算力至上的传统观念。其DeepSeek-R1模型采用少量SFT数据和多轮强化学习,不仅提高了模型准确性,还大幅降低内存占用和计算开销。此外,DeepSeek的推理模型R1-zero基于强化学习训练,实现了无监督训练或人类反馈的自我学习,推动AI进入算法变革阶段。在模型发展趋势上,低参数量模型的出现使得AI技术可以部署到更多终端设备,推动了AI技术的广泛应用。 在应用拓展方面,DeepSeek技术在医疗AI领域广泛应用,助力多家医疗企业提高诊断准确性和病理分析效率。同时,DeepSeek的AI技术也推动了制药研发的加速,国内药企如晶泰控股、信达生物等已通过其技术提升研发效率。在大健康管理领域,DeepSeek的大模型支持个性化健康管理解决方案,推动了AI技术在医疗领域的商业化进程。此外,DeepSeek-R1的高精度运动控制和人工智能算法提高了手术机器人的操作精度和灵活性,在康复、人机交互、远程医疗等领域具有潜在的技术突破能力。 在产业发展方面,DeepSeek补上了中国人工智能在基础底座方面的短板,用有限算力实现了推理上的优化,推动了中国AI应用的大规模发展。其产品DAU迅速增长,显示出强大的用户吸引力和应用潜力。DeepSeek开源的基于McE架构的模型DeepSeek-McE,以极低计算成本实现了高性能,为行业提供了新的技术路线选择。 从行业趋势看,DeepSeek的出现推动了AI技术从技术能力驱动向需求应用驱动的转型,更注重AI技术在各行业的落地和应用。同时,非Transformer架构的新算法也成为了AI模型架构多样性发展的新方向。DeepSeek相关的新架构模型如LFM(Liquid Foundation Model)模型,其性能超越了同等规模的Transformer模型,为AI技术的进一步突破提供了新的思路和方向。 总结以上,DeepSeek在技术创新、应用拓展、产业发展等方面均扮演了重要角色,不仅引领了工业人工智能的技术发展,还在实际应用中展现出巨大的商业价值和行业影响力。其推动的技术进步和产业升级预示着人工智能技术将更加深入地融入人类社会的各个方面,为解决实际问题提供强有力的工具。
2025-10-07 09:52:37 5.71MB
1
疾病预测和医疗推荐系统的开发是近年来医疗健康领域应用人工智能技术的重要进展。通过机器学习技术,该系统能够根据用户输入的症状进行疾病预测,这不仅提高了医疗诊断的效率,还为用户提供个性化的医疗服务建议。该系统主要功能可以分为两大模块:疾病预测和个性化医疗推荐。 在疾病预测方面,系统首先需要收集和整理大量的医疗数据,这些数据包括但不限于患者的病例记录、医学检验结果以及相关的临床研究资料。通过对这些数据的深入分析,机器学习模型能够学习到不同症状和疾病之间的关联规律。当用户输入自己的症状后,系统会利用训练好的模型来分析症状与可能疾病的对应关系,并给出一个或多个可能的疾病预测结果。 疾病预测只是第一步,更为核心的是提供个性化医疗建议。根据预测结果,系统能够为用户推荐量身定制的药物治疗方案、饮食调整建议以及锻炼计划。例如,对于高血压患者,系统不仅会推荐特定的降压药物,还会根据患者的生活习惯和体质,提供适合的饮食方案,如低盐低脂食谱,以及适宜的运动方式和运动强度建议,如温和的有氧运动和力量训练。 要实现这样一个系统,其开发过程中需要解决一系列的技术挑战。准确收集和处理医疗数据至关重要。数据的质量直接决定了模型的预测能力。需要选择合适的机器学习算法来构建疾病预测模型。常用的算法包括决策树、随机森林、支持向量机、神经网络等。为了提高预测的准确性和系统的可靠性,通常需要对多种算法进行尝试和比较,并通过交叉验证等方法对模型进行优化。 此外,系统还需要具备良好的用户体验设计。通过友好的界面设计让用户能够方便地输入自己的症状信息,并且清晰地展示预测结果和医疗建议。这通常需要前端开发技术来实现,比如HTML、CSS和JavaScript等。系统后端则需要处理数据存储、模型计算等任务,确保整个服务的流畅运行。 为了确保系统的安全性和隐私性,还需要考虑数据加密和访问控制机制,以保护用户的敏感信息。在数据存储和处理过程中,遵守相关的医疗保健数据保护法规是非常必要的。此外,系统在部署前还需要进行严格的测试,以确保其稳定性和可靠性。 疾病预测和医疗推荐系统不仅需要先进的机器学习技术作为核心支撑,还需要结合前端技术、后端服务以及用户界面设计。通过这些技术的综合应用,可以实现一个高效、准确且用户友好的医疗服务平台。
2025-10-05 21:07:30 2.82MB
1
百度SDK的三种鉴权方式非常容易混淆,所以我专门写了一篇博客:https://blog.csdn.net/quickrubber/article/details/146971733 相关的代码就在这个压缩包中。 在当今数字化时代,软件开发人员经常需要利用各种第三方服务来丰富应用程序的功能,其中百度作为中国领先的人工智能技术公司,其提供的SDK(软件开发工具包)尤其受到开发者的青睐。SDK中包含了实现各种服务所需的功能模块,如图像识别、语音识别、自然语言处理等。为了保障服务的安全性和可追踪性,百度SDK通常要求开发者在使用过程中进行鉴权验证。鉴权是指确认请求是否来自合法用户,防止未授权访问和滥用资源,这对于保护用户数据安全和保证服务的合规性至关重要。 在百度SDK中,鉴权通常涉及三种主要方式:API Key、Secret Key和Access Token。API Key是一个公开的密钥,用于标识开发者身份,可以公开分享而不影响安全性。Secret Key则是与API Key配套的私钥,它需要保密,不能泄露,因为它用于对请求进行签名,以确保请求是由拥有密钥的开发者发起的。Access Token是另一种类型的密钥,它通常用于用户的登录态管理,可以提供细粒度的访问控制,适用于需要用户授权的应用场景。 在进行百度SDK鉴权测试时,开发者需要编写代码来验证这三种鉴权方式是否正确应用,以及它们是否能够在不同情境下有效运行。测试代码不仅要能够正确生成和使用这些密钥,还要能够模拟非法访问的情况,从而确保鉴权机制的健壮性。 在编写测试代码的过程中,开发者可能会使用多种编程语言和测试框架。根据给定的文件名称,此处的测试代码可能是使用Python 3.8版本编写的。Python因其简洁易读的语法和强大的库支持,成为了很多开发者进行快速原型开发和测试的首选语言。在测试代码中,开发者需要模拟不同的请求场景,包括但不限于正常的鉴权请求、API Key泄露后的非法请求、以及Secret Key被滥用的情况等。 除了编写测试代码,开发者可能还会在博客或其他技术文章中分享他们的测试经验和发现的问题。通过这样的技术分享,不仅可以帮助其他开发者更好地理解百度SDK的鉴权机制,也可以促进开发者之间的技术交流和合作。 此外,随着人工智能技术的快速发展,机器视觉作为其中的一个重要分支,在鉴权过程中也扮演着不可或缺的角色。机器视觉技术可以用于增强鉴权的安全性,例如通过人脸识别来验证用户身份,或者通过图像识别来检测和防范欺诈行为。因此,在百度SDK中融入机器视觉技术,也是提高鉴权能力的一种有效手段。 百度SDK提供的多种鉴权方式,可以有效地保护API服务的安全。通过编写和测试相关的代码,开发者不仅能够确保他们的应用安全合规,还能提升用户体验。而通过分享测试经验和编写技术文章,开发者能够为整个技术社区贡献力量,共同推动人工智能技术的发展和应用。
2025-10-05 18:56:42 66KB 百度SDK 人工智能 机器视觉
1
人工智能(AI)作为21世纪的技术革命代表,正以前所未有的速度渗透到人类生活的方方面面,从提高生产效率到为解决社会问题提供新途径,它的影响无处不在。然而,随之而来的是AI技术在伦理、法律和社会层面所引发的一系列问题,如何确保AI的可信性成为了全球关注的焦点。 《可信人工智能治理白皮书》由安永(中国)企业咨询有限公司与上海市人工智能与社会发展研究会联合撰写,是一份旨在深入探讨AI全球发展态势、监管体系、可信原则、关键问题、企业合规要求、风险治理理论、进阶工具及行业洞察的文件。白皮书提供了全面、深入、客观的参考和指导,尤其在政策制定者、企业管理者、技术开发者及所有关心AI发展的人士中具有重要价值。 白皮书探讨了“可信人工智能”的内涵,并分析了算法透明度、数据安全、伦理道德等方面的挑战。同时,它关注企业AI应用中的合规要求,以及风险治理这一AI发展中的重要议题。在风险管理方面,白皮书详细阐述了风险治理架构的构建和在AI生命周期中实施有效风险管理的方法,特别是如何构建和运营自己的AI管理体系。 在AI技术的发展过程中,技术突破是重要的一环,但更重要的是对人类社会价值观、伦理道德和法律体系的考验。建立一套公正、透明、高效的AI治理体系,是确保AI技术健康发展的关键。白皮书提供的一系列AI治理工具和行业实践案例,旨在为读者提供具体的应用视角以及实际操作中可能遇到的问题和解决方案。 白皮书的结构清晰,从全球AI发展与监管体系讲起,再到人工智能的可信原则,探讨了算法透明度、数据安全、伦理道德等方面面临的关键问题。在企业合规要求部分,白皮书详细介绍了资质监管、算法合规以及内容合规的要求,并在风险管理部分,深入讲解了风险治理架构、生命周期风险治理和人员风险治理。企业AI治理进阶工具部分着重介绍了AI治理国际标准及可信等级管理的实践,为企业的AI治理体系提供了实用指导。 这份白皮书不仅是对AI技术发展现状的深入剖析,也对未来AI的治理和发展路径提出了见解。它不仅是技术的总结,更是对AI技术发展潜在挑战的思考,呼吁社会各界共同努力,以推动AI技术的健康发展,并使之成为推动社会进步的正能量。
2025-10-03 10:42:43 3.99MB
1
unity 机器学习插件 版本V0.7 目前是最新版了 觉得在GitHub下载速度太慢可以用这个
2025-10-02 23:55:57 59.28MB 人工智能 AI unity ML-Agents
1
在当前的人工智能领域,AI大模型已成为推动技术发展的关键力量。AI大模型是指那些参数量级大、基于深度学习技术构建的模型,它们通过大量的数据训练来实现复杂的特征表示学习,并在各种AI任务中表现卓越。本内容从国内主流AI大模型的介绍出发,对这些模型的发展背景、应用范围以及对比分析进行了深入探讨。 AI大模型的发展得益于多个方面:计算能力的显著提升,特别是GPU、TPU等专用硬件的普及,为训练更大规模的模型提供了可能;大数据时代的来临,提供了海量的数据资源,使得AI模型能够获得更全面的学习;以及深度学习技术的不断突破,例如卷积神经网络(CNN)、循环神经网络(RNN)、Transformer等结构的出现,这些技术的进步为AI大模型的性能提升提供了坚实的技术支持。 AI大模型的应用领域非常广泛,包括但不限于自然语言处理、计算机视觉以及语音处理和生成。在自然语言处理领域,AI大模型被用于语言模型、机器翻译、文本生成、情感分析等任务中,它们能够更好地理解和生成人类语言,捕捉语言的复杂性和上下文信息。在计算机视觉方面,AI大模型在图像分类、目标检测、图像生成等任务中表现出色,能够学习视觉特征表示,实现高性能的视觉任务处理。此外,AI大模型也在语音识别、语音合成等语音处理和生成任务中发挥作用,通过更准确的模型建模,捕捉语音信号的复杂性和长时依赖关系。 国内主流的AI大模型中,百度公司推出的文心一言(ERNIE Bot)是一个值得关注的例子。文心一言是基于百度文心大模型技术推出的生成式对话产品,它的技术核心是知识增强型的大模型。该模型已经被广泛应用于搜索、信息流、智能音箱等多种互联网产品中,有效降低了AI应用的门槛,促进了产业智能化的升级。 另一个例子是智源研究院开发的开源AI模型ChatGLM-6B。这个基于Transformer结构的模型,支持中英文对话,能够在智能客服、智能家居、车载语音助手等领域提供高效、便捷的语音交互体验。通过与其他技术的集成,ChatGLM-6B还能实现更丰富的功能,满足用户的多样化需求。 在模型对比分析中,重点关注了各模型在数据处理能力、准确性、实时性以及应用场景方面表现的差异。通过对这些关键性能指标的评估,比如训练速度、推理效率、准确性、召回率和F1分数等,我们可以更全面地了解不同AI大模型的性能优势和局限性。同时,模型的创新性与独特性,包括在架构和技术运用方面的创新,以及在开源、API接口和第三方开发者合作方面的开放态度和创新能力,也是评估的重要方面。 未来AI大模型的发展趋势与挑战也不容忽视。随着技术的不断进步,模型规模可能会继续扩大,导致模型训练和部署所需的资源更加昂贵。此外,模型训练过程中的环境影响、模型泛化能力的提升以及如何实现高效且可靠的模型更新和维护等问题,都是AI大模型发展道路上亟待解决的挑战。 通过上述分析,我们可以看出,AI大模型在理论和应用层面都展现出强大的潜力,但同样面临着不少挑战。随着未来研究的深入和技术的发展,AI大模型有望在更多领域发挥重要作用,为人工智能技术的提升带来新的动力。
2025-10-02 16:02:14 3.74MB 人工智能 AI
1