神经网络设计 Martin T.Hagan (美)Howard B.Demuth Mark H.Beale 此书介绍了神经网络的基本结构和学习规划,重点是对这些神经网络的数学分析、训练方法和神经网络在模式识别、信号处理以及控制系统等工程实践问题中的应用。并带有matlab代码实现及讲解。 1.绪论 2.神经网络结构 3.说明性实例 4.感知学习规划 5.信号和权值向量空间 6.神经网络中的线性变换 7.有监督的Hebb学习 8.性能曲面 9.性能优化 10.Widrow-Hoff学习算法 11.反向传播 12.反向传播的变形 13.联想学习 14.竞争网络 15.Grossberg网络 16.自适应谐振理论 17.稳定性 18.Hopfiled网络
2025-08-07 15:50:06 17.03MB 神经网络 Hagan matlab 人工智能
1
医疗器械软件描述文档的知识点主要包括以下内容: 1. 基本信息:该部分需详细记录医疗器械软件的基础信息,包括软件的名称、型号、版本号、制造商以及生产地址等。这些信息对于产品的识别、追溯以及管理非常重要。 2. 安全性级别:医疗器械软件的安全性级别按照相关标准(如YY/T 0664-2008)被分为A、B、C三级,分别对应不同健康风险程度。A级意味着软件使用不可能造成健康伤害,B级可能造成轻微伤害,而C级则可能引发死亡或严重伤害。安全性级别对于医疗器械的临床使用至关重要,并在软件失效的潜在后果及其发生概率基础上进行评估。 3. 结构功能:这部分详细描述了软件的组成模块、各模块功能以及模块间的关系。具体包括体系结构图的呈现、模块功能说明、用户界面设计、外部接口定义等。 4. 体系结构图:展示软件组成模块之间以及与外部接口之间的结构关系。这有助于理解软件的内部工作原理和模块间如何互相作用。 5. 各模块功能说明:软件系统通常由多个模块组成,每个模块下又细分为不同的功能项。这些功能项需要按照其重要性进行分级,例如一级功能、二级功能、三级功能等,并对每个功能进行详细的功能说明。 6. 用户界面设计:介绍用户如何通过图形用户界面(GUI)与软件进行交互,比如窗口、菜单、对话框等操作元素。 7. 外部接口:涉及软件与外部系统的交互方式,包括数据库访问接口、网络通信协议等。 8. 硬件关系:详细描述医疗器械软件与通用计算机、医疗器械硬件之间的物理连接关系,物理拓扑图展示了这些硬件组件是如何互联的。 9. 连接关系描述:进一步阐明软件、PC和医疗器械硬件之间的物理连接细节,包括接口类型、数据传输方式等。 10. 运行环境:列出软件运行所需的硬件配置要求,如处理器、存储等,以及软件的其他运行时依赖和限制。 11. 安全性与可靠性设计:虽然在给定的文档节选中未明确提及,但这是医疗器械软件开发的一个重要方面。安全性设计要考虑到软件的容错能力、数据加密、用户认证等方面。可靠性设计则涉及软件的稳定运行和数据恢复机制。 12. 验证与测试:医疗器械软件开发过程中的验证与测试是确保产品安全有效的重要环节。文档中应记录软件功能的测试方法、测试用例、结果以及问题解决措施。 13. 法规遵从性:该软件描述文档应确保软件符合相关的医疗器械法规和标准,如YY/T 0664-2008等,以及软件在设计、开发、测试和维护过程中的质量管理体系。 14. 其他可能需要包含的文档:如用户手册、安装指南、维护手册、故障排除指南等,以帮助用户更好地理解和使用软件。 医疗设备软件的开发、测试和使用,除了上述这些关键知识点外,还需要严格遵循相关的医疗法规和标准,确保患者的安全性是首要考量的因素。由于医疗器械可能直接关系到病患的生命安全,因此在软件的整个生命周期中必须进行严格的监管和控制,以满足法规和质量要求。
2025-08-05 16:27:25 631KB
1
】近日,由清华大学人工智能研究院、北京智源人工智能研究院、清华—中国工程院知识智能联合研究中心、阿里集团—新零售智能引擎事业群编写的《人工智能之认知图谱》报告正式发布。报告显示,以知识图谱、认知推理、逻辑表达等技术为支撑的认知图谱是实现机器认知智能的使能器,不仅让机器理解数据的本质,还可以让机器解释现象的本质。 【认知图谱】是人工智能领域的一个重要分支,它结合了认知心理学、脑科学以及人类知识,致力于构建一种新型的认知引擎。这种引擎不仅能够理解和处理大量的数据,还能对现象进行本质的解释,推动人工智能从简单的感知智能阶段迈向认知智能。认知图谱通过知识图谱、认知推理和逻辑表达等技术来实现这一目标,它强调机器的理解能力和解释能力,以实现可解释性和鲁棒性,是第三代人工智能的重要组成部分。 **知识图谱**是认知图谱的核心元素之一,它是结构化的知识存储方式,用于表示实体(如人、地点、事件)及其相互关系。知识图谱的发展历程可以从早期的知识库系统追溯到现代的大规模知识图谱,如Google的知识图谱。关键技术包括知识的获取、整合、验证和更新,以及基于图谱的查询和推理。知识图谱广泛应用于搜索引擎、智能助手等领域,改善信息检索和理解的效率。 **认知推理**则是在知识图谱基础上,通过推理算法来模拟人类思考过程,解决复杂问题。这涉及到推理规则的建立、推理算法的设计和优化,以及推理结果的评估。认知推理在智能决策、问答系统等方面有重要应用,它使得机器能够依据已有的知识进行逻辑推断,从而理解和预测未知情境。 **逻辑表达**是认知图谱中的另一关键环节,它使用形式逻辑来表示和处理知识,使得机器可以进行精确的推理。逻辑表达通常涉及一阶逻辑、描述逻辑等,这些逻辑系统提供了强大的表达能力,可以处理复杂的语义关系。 报告中还分析了**认知图谱领域的人才现状**,通过对AMiner平台数据的研究,揭示了国内外学者分布、学术水平、国际合作以及人才流动的情况,指出中国在人才培养和引进方面的挑战,并提出了相应对策。 在**应用场景**部分,以阿里巴巴电商平台为例,展示了认知图谱如何提升搜索和推荐系统的性能。此外,认知图谱还在智慧城市、司法、金融、安防、精准分析等多个领域有广泛应用,例如,通过智能解释和自然人机交互提高服务质量和效率,通过智能推荐优化用户体验。 报告对**认知图谱的发展趋势**进行了展望,包括技术创新热点、专利数据和国家自然科学基金支持的情况。这预示着未来认知图谱将在更多领域深化应用,推动人工智能的进一步发展。 《人工智能之认知图谱》研究报告详尽探讨了认知图谱的理论基础、关键技术、人才状况、应用实例和发展前景,对于理解和研究人工智能的高级阶段——认知智能具有重要参考价值。随着技术的进步,认知图谱将更深入地融入我们的日常生活和工作中,成为推动社会智能化进程的关键工具。
2025-08-05 13:35:47 10.85MB AI 认知图谱
1
清华大学人工智能研究院-人工智能之认知图谱-2020.8-239页.pdf
2025-08-05 13:34:21 10.17MB
1
在本项目中,通过数据科学和AI的方法,分析挖掘人力资源流失问题,并基于机器学习构建解决问题的方法,并且,我们通过对AI模型的反向解释,可以深入理解导致人员流失的主要因素,HR部门也可以根据分析做出正确的决定。
2025-08-04 20:21:46 105KB 人工智能 机器学习
1
疲劳驾驶监测系统是旨在通过技术手段及时发现驾驶员的疲劳状态,以预防可能由此引发的交通事故,保障行车安全。近年来,随着人工智能技术的快速发展,疲劳驾驶监测系统得到了长足的进步,尤其是在Android平台上,由于其开放性与广泛应用,结合嵌入式系统的高效稳定,疲劳驾驶监测系统得到了更为广泛的关注和应用。 本研究重点在于Android平台疲劳驾驶监测系统的嵌入式实现与优化。会对Android平台的系统简介、特点及优势,以及Android平台在疲劳驾驶监测中应用现状进行深入的探讨。随后,对疲劳驾驶的定义、分类、影响因素进行解析,并对现有的疲劳驾驶检测技术进行综述。为了更进一步,论文将深入探讨嵌入式系统的基础知识,包括嵌入式系统的概念、特点、开发环境以及编程基础。 在系统架构设计方面,论文将从系统总体架构设计、硬件设计模块,以及软件设计模块进行详细介绍。其中硬件设计模块涵盖传感器模块、数据采集模块和数据处理模块;软件设计模块则包含用户界面设计、数据处理与分析模块、数据存储与管理模块。这样的设计使得疲劳驾驶监测系统能够高效、准确地运行。 在算法实现方面,研究将着重分析疲劳驾驶监测系统所采用的信号处理算法,包括时频域分析方法和小波变换方法,以及特征提取算法和疲劳程度评估算法。其中特征提取算法将涉及机器学习和深度学习方法,而疲劳程度评估算法则包括疲劳度计算模型和疲劳程度预测模型。这些算法是疲劳驾驶监测系统核心,其准确度和效率直接影响系统的性能。 为了提高嵌入式系统的性能,研究将探讨系统的性能优化策略,主要集中在系统功耗优化上。优化策略的实施,旨在确保疲劳驾驶监测系统在实时监测的同时,尽可能降低能耗,从而延长系统的工作时间,并确保系统的长期稳定性。 本研究将对Android平台上疲劳驾驶监测系统的嵌入式实现与优化进行全面的分析与探讨,为相关领域提供理论与实践的参考。通过深入研究,本系统可望在降低交通事故率、保障驾驶安全方面发挥积极作用。
2025-08-04 15:00:25 91KB 人工智能 AI
1
LF-AI-STREAM-AI人工智能资源是围绕LF-AI-STREAM和GB28181标准设计的,旨在整合人工智能技术与流媒体处理,为开发者提供一套完整的资源包。LF-AI-STREAMGB28181是一个开放标准,它规定了如何在IP网络上传输视频、音频和控制信息的协议,广泛应用于安全监控、视频会议等场景。在人工智能领域,这一标准结合了AI技术,提升了视频流分析的智能化水平,使系统能够更好地识别、分析和处理视频内容。 该项目采用多模块化设计,包含多个子项目,如iot-parent、iot-device、iot-system、iot-stream、iot-things等,这些模块涵盖了从设备、系统到流处理的各个方面。其中,iot-parent可能是整个项目的基础父模块,负责管理项目依赖关系和版本信息;iot-device关注于设备端的接入和管理;iot-system可能涉及整个系统的架构设计;iot-stream专注于视频流的处理;iot-things则可能与物联网设备和相关技术相结合。 在项目中,readme.txt文件是至关重要的文档,通常包含项目的基本介绍、安装指南、使用说明和注意事项,是用户了解和使用资源包的首要参考。pom.xml文件则涉及到Java项目管理和构建的配置文件,其中定义了项目的坐标、依赖关系、构建配置等,是基于Maven构建系统的重要文件。 .iot-infra文件夹可能包含了项目基础设施的配置和管理,包括网络、服务器、数据库等方面的设置;.idea文件夹则是IntelliJ IDEA开发环境的配置文件夹,它保存了IDE的个性化设置,便于开发者在不同的工作环境中保持一致的开发体验;.image文件夹可能用于存放项目中使用到的图像资源或者进行持续集成/持续部署(CI/CD)流程中的镜像文件。 整个资源包支持了AI技术与流媒体处理的结合,为开发者提供了丰富的模块和工具,无论是从单个设备接入到系统集成,还是流媒体的处理和分析,都能找到相应的解决方案和接口。开发者可以根据具体需求,灵活选择和组合这些模块,快速搭建出符合GB28181标准的智能化视频监控系统或流媒体应用。 此外,LF-AI-STREAM-AI项目中的标签表明其专注于人工智能技术,尤其在流媒体处理方面。在当前数字化转型和智能化升级的浪潮中,该项目的资源包能够帮助企业和组织更好地实现视频数据的智能分析和应用,提升业务效率和智能化水平。
2025-08-03 22:23:00 55.49MB AI STREAM 人工智能
1
人工智能(AI)是计算机科学的一个分支,它试图理解智能的本质并生产出一种新的能以人类智能相媲美的智能机器。AI的核心问题包括推理、知识、规划、学习、沟通、感知、移动和操作等。在众多的AI应用中,基于视频流的智能分析是十分重要的一环,尤其是在安全监控、交通管理、零售分析等领域。 “LF-AI-STREAM-AI人工智能资源”项目在AI领域内,尤其关注流媒体数据的智能分析。根据项目的名称和相关文件结构,我们可以推测该项目是一个包含多个模块的综合性AI解决方案,旨在提供对流媒体数据(如视频、音频)进行实时处理和智能分析的能力。 项目中提到的“GB28181”是中国国家标准化管理委员会发布的一项标准,名为《安全防范视频监控联网系统信息传输、交换、控制技术要求》,该标准主要针对视频监控系统。这意味着项目在技术上需要满足特定的标准要求,以确保智能分析的兼容性和有效性。 从文件名称列表来看,该项目至少包含了以下几个部分: - readme.txt:一个文本文件,通常用于介绍项目的基本信息、使用说明、安装指南以及配置详情等。 - pom.xml:这是一个Maven项目对象模型文件,Maven是一个自动化构建和依赖管理工具,用于管理项目构建过程中的依赖关系。 - iot-parent:很可能是整个项目的父模块,用于管理多个子模块的依赖关系、插件配置、全局属性等。 - iot-device、iot-system、iot-stream、iot-things:这些子模块可能分别对应于物联网(IoT)中的设备、系统、数据流和物(设备)的管理与智能分析。 - .idea:这个目录通常是IntelliJ IDEA集成开发环境的项目配置文件夹,存放着IDE相关的配置信息。 - iot-infra:可能是一个包含基础设施相关代码和配置的模块,涉及网络、数据库、服务器等基础设施层面的内容。 - .image:虽然具体的文件未列出,但从名称上判断,这可能是一个包含项目所依赖的镜像文件,或者与系统镜像、虚拟化技术有关的模块。 结合以上信息,可以判断这个项目是一个集成化的AI平台,专注于物联网设备数据的智能分析,尤其是流媒体数据,以及提供相应的基础设施支持。 由于项目涉及“AI”和“流媒体”两个关键词,它可能在实时性、数据处理速度和智能分析能力方面有较高的要求。此外,由于涉及到“iot”(物联网),项目可能还需要具备远程监控、远程控制和数据采集的能力。这通常意味着需要有一套完整的API和可能的第三方服务集成。 另外,标签中的“资源”可能意味着项目会提供一系列可复用的代码、库、API接口、工具等,方便开发者在新的项目中直接利用或者集成现有的功能模块。 综合来看,这个项目是一个全面的物联网数据智能分析平台,它通过提供多个模块化、可复用的组件,为开发者和用户提供了一套完整的解决方案,用以快速开发和部署AI在物联网场景下的各种应用。
2025-08-03 22:22:14 55.49MB AI STREAM 人工智能
1
LF-AI-STREAMAI LF-AI-STREAM GB28181 AI“”
2025-08-03 18:00:10 55.49MB AI STREAM 人工智能
1
内容概要:本文详细介绍了如何使用 Python 和 LangChain 快速搭建本地 AI 知识库。首先阐述了 Python 和大语言模型(LLM)结合的优势,以及 LangChain 作为桥梁连接 LLM 和外部数据的重要性。接着,通过具体步骤展示了整个搭建流程,包括环境搭建、安装 LangChain 及相关依赖、获取 API Key、数据加载、文档切片、存储到向量数据库、检索与生成等环节。最后,通过完整代码示例和实战演练,展示了如何实现智能问答功能,并提出了性能优化和功能拓展的方向,如支持多模态数据和集成其他工具等。 适合人群:具备一定编程基础,特别是熟悉 Python 和机器学习框架的研发人员,以及对构建智能知识库感兴趣的从业者。 使用场景及目标:①企业内部知识管理和智能办公,如客户服务、研发支持等;②教育领域的个性化学习辅导;③医疗领域的辅助诊断和治疗方案制定;④提升知识库的响应速度和查询效率,优化用户体验。 阅读建议:本文不仅提供了详细的代码实现和操作指南,还深入探讨了性能优化和技术拓展的可能性。建议读者在学习过程中结合实际需求,逐步实践每个步骤,并根据具体的业务场景进行调整和优化。同时,关注多模态数据处理和与其他工具的集成,以充分发挥本地 AI 知识库的潜力。
2025-08-02 23:35:49 28KB Python 文本处理
1