我的作业,人工智能-八数码实现,写的有些仓促,采用了盲目搜索中的广度优先,A、A*搜索。大家有兴趣的拿回去帮我看看吧,提提修改的意见,压缩INT数的数据结构我已经实验过,很不错,但是唯一的问题就是程序方法不易懂。开发工具--C# 2.0
2024-11-13 13:39:09 896KB 人工智能
1
人工智能导论模型与算法吴飞pdf 人工智能:模型与算法教学大纲 从逻辑推理、搜索求解、监督学习、无监督学习、深度学习、强化学习和博 弈对抗介绍人工智能基本概念和模型算法,帮助学习者了解人工智能历史、趋势、 应用及挑战,掌握人工智能在自然语言理解和视觉分析等方面赋能实体经济的手 段。 课程概述 人工智能(Artificial Intelligence,简称 AI)是以机器为载体所展示出来的人类智 能,因此人工智能也被称为机器智能(Machine Intelligence)。对人类智能的模拟可 通过以符号主义为核心的逻辑推理、以问题求解为核心的探询搜索、以数据驱动 为核心的机器学习、以行为主义为核心的强化学习和以博弈对抗为核心的决策智 能等方法来实现。 本课程成体系介绍人工智能的基本概念和基础算法,可帮助学习者掌握人工 智能脉络体系,体会具能、使能和赋能,从算法层面对人工智能技术“知其意, 悟其理,守其则,践其行”。课程内容包括如下:人工智能概述、搜索求解、逻 辑与推理、监督学习、无监督学习、深度学习、强化学习、博弈对抗。 人工智能不单纯是一门课程、一手技术、一项产品或一个应用,而是理论 《人工智能导论:模型与算法》是吴飞教授的一本专著,该书详细阐述了人工智能的基本概念和核心算法,旨在帮助读者理解人工智能的历史、发展趋势、应用及其面临的挑战。本书覆盖了从逻辑推理到强化学习等多个关键领域的知识,旨在使学习者能够掌握人工智能的核心原理,并能在实践中运用。 课程首先介绍了人工智能的概述,包括可计算思想的起源、AI的发展历程以及研究的基本内容。接下来,课程深入讨论了搜索求解策略,如启发式搜索、对抗搜索和蒙特卡洛树搜索,这些都是解决问题的关键工具。 逻辑与推理部分涵盖了命题逻辑和谓词逻辑,以及知识图谱推理算法,如一阶归纳推理和路径排序算法,这些内容在知识表示和推理中起到重要作用。因果推理的讲解则帮助学习者理解如何从数据中发现因果关系。 统计机器学习部分分别探讨了监督学习和无监督学习。在监督学习中,介绍了机器学习的基本概念、线性回归分析以及提升算法。无监督学习部分涉及K均值聚类、主成分分析和特征人脸算法,这些都是数据分析和模式识别的重要方法。 深度学习是现代AI的热点,课程涵盖了深度学习的基础概念,如前馈神经网络和误差反向传播,以及卷积神经网络的应用,特别是在自然语言处理和视觉分析中的角色。 强化学习是让机器通过与环境交互自我学习的方法,课程讲解了强化学习的基本定义、策略优化、Q Learning以及深度强化学习,这些都是智能决策系统的关键。 博弈论部分介绍了人工智能在决策和策略制定中的应用,包括博弈的相关概念、遗憾最小化算法和虚拟遗憾最小化算法,同时也关注了人工智能安全的问题。 课程讨论了人工智能的发展与挑战,如记忆驱动的智能计算、可计算社会学,并对当前AI面临的若干挑战进行了分析。 课程还设置了丰富的实践环节,如基于搜索求解的黑白棋AI算法、线性回归的图像恢复和深度学习的垃圾分类等,以提高学生的实际操作能力。 预备知识包括线性代数和概率论的基本概念,以及一定的编程能力。参考书籍包括吴飞教授的《人工智能导论:模型与算法》和《人工智能初步》。 这门课程全面且深入地介绍了人工智能的理论和实践,不仅提供了理论框架,还强调了算法的理解和应用,是学习人工智能的宝贵资源。
2024-11-07 19:52:29 198KB 人工智能
1
Overtone 是 Unity 的离线文本转语音资产。 使用 15 种以上的语言、900 多种英语语音、快速的性能和跨平台支持来丰富您的游戏。 资源仅供研究学习使用,若要商用请到资源商店购买https://assetstore.unity.com/packages/tools/generative-ai/overtone-realistic-ai-offline-text-to-speech-tts-251304
2024-11-07 18:01:14 301.29MB unity 人工智能
1
Python语言下使用爬虫工具从求医问药网爬取、解析相应的数据内容,经处理融合后生成结构化数据文件。 以此文件可构建起以疾病为中心的医疗知识图谱,实体规模4.4万,实体关系规模30万。 医药领域知识图谱,主要包含实体约4.4万个,其中包括Check,诊断检查项目,3353;Department,医疗科目,54;Disease,疾病,8807;Drug,药品,3828;Food,食物, 4870;Producer,在售药品,17201;Symptom,疾病症状,5,998。 关系总计约30万条,主要包括属于、疾病常用药品、疾病宜吃食物、药品在售药品、疾病所需检查、疾病忌吃食物、疾病推荐药品、疾病推荐食谱、疾病症状、疾病并发疾病等。 属性包含疾病名称、 疾病简介、疾病病因、预防措施、治疗周期、治疗方式、治愈概率、疾病易感人群等
2024-11-06 17:13:06 14MB 健康医疗 知识图谱 json
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2024-11-06 15:18:17 53.44MB python 人工智能 ai
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2024-11-06 15:13:34 357KB 人工智能 ai python
1
我们的这款产品是一款创新的设备故障可视化监测云平台,旨在为企业提供全方位的设备监测和管理解决方案。我们的平台整合了先进的物联网技术、大数据分析和人工智能算法,能够实时监测设备的运行状态、性能数据和健康状况,并通过直观的可视化界面展示给用户。通过我们的平台,用户可以随时随地远程监控设备运行情况,及时发现潜在故障并采取预防措施,从而提高设备的可靠性和生产效率。我们的平台还支持智能预警功能,能够通过数据分析和模型预测,提前发现设备可能出现的故障,并及时发送预警通知给用户,帮助他们采取相应的维护措施,避免设备停机损失。此外,我们的平台还提供了设备运行数据的历史记录和分析报告,帮助用户深入了解设备的运行状况,优化设备维护计划,降低维护成本。无论是制造业、能源行业还是物流领域,我们的平台都能为用户提供定制化的设备监测解决方案,帮助他们实现设备智能化管理,提高生产效率和设备利用率。通过我们的产品,用户可以实现设备故障的实时监测和预防,提高设备的运行效率和可靠性,降低生产成本,增强市场竞争力。
2024-11-06 13:13:10 652KB 数据分析 人工智能
1
《基于科大讯飞语音识别的C# demo实践与解析》 在当今信息化社会,语音识别技术已经成为人机交互的重要一环,特别是在智能设备、智能家居、自动驾驶等领域有着广泛的应用。科大讯飞作为国内领先的语音技术提供商,其提供的语音识别API和服务在业界享有较高的声誉。本文将基于一个名为“基于科大讯飞语音识别demo”的C#项目,深入探讨如何利用科大讯飞的SDK进行语音识别,并解决实际开发中可能遇到的问题。 我们要理解这个项目的背景。在CSDN等开发者社区中,我们经常会发现许多开发者在尝试使用科大讯飞的API时遇到了各种困难,比如无法执行、报错等问题。这个C#版本的demo就是为了解决这些问题而设计的,它经过了修改,可以确保直接运行,开发者只需要替换appid和msc文件即可。appid是科大讯飞平台分配的唯一标识,用于区分不同的应用;而msc文件则是科大讯飞的SDK核心组件,包含了识别所需的算法和资源。 接下来,我们将详细分析这个项目的实现过程。我们需要在科大讯飞的开发者平台上注册账号并创建应用,获取appid。然后,下载科大讯飞的SDK,其中包含必要的库文件和示例代码。在这个C# demo中,开发者需要将appid填入到程序配置中,以使程序能够正确地与科大讯飞的服务器进行通信。 在代码层面,项目通常会包含以下关键模块: 1. **初始化模块**:设置appid,加载msc文件,初始化语音识别引擎。 2. **录音模块**:调用科大讯飞SDK提供的录音接口,捕获用户的语音输入。 3. **识别模块**:将录音数据发送至服务器,进行语音识别,返回识别结果。 4. **处理模块**:接收识别结果,根据业务需求进行相应的处理,如显示识别文本,执行命令等。 5. **异常处理模块**:对可能出现的网络错误、识别错误等进行处理,保证程序的稳定运行。 在实际应用中,开发者可能会遇到一些常见问题,例如网络不稳定导致的通信失败、音频格式不兼容、识别率低等。对于这些问题,可以通过优化网络环境、选择合适的音频编码格式、调整识别参数(如语速、音量等)来解决。 此外,了解科大讯飞的语音识别技术原理也很重要。它通常包括预处理(如噪声抑制、回声消除)、特征提取、模型匹配和解码等多个步骤。通过不断学习和优化,科大讯飞的识别系统能够适应各种复杂的环境,提供高精度的识别服务。 这个基于科大讯飞的C#语音识别demo为开发者提供了一个快速上手的起点,帮助他们避免了在项目初期可能遇到的诸多困扰。同时,通过深入研究和实践,开发者可以更好地理解和运用语音识别技术,为各种应用场景带来更加智能化的解决方案。
2024-11-05 11:28:04 6.97MB 源码软件 语音识别 人工智能
1
DeepVoice是一种LAM(大型音频模型)网络和库,能够使用人工智能和针对Unity的深度学习通过文本生成逼真的语音。
2024-11-04 15:30:11 18.41MB unity 人工智能 语音转换
1
### 《人工智能必备数学》概览与核心知识点 #### 核心内容介绍 《Essential Math for AI》一书由Hala Nelson撰写,于2023年由O'Reilly Media出版社出版。本书针对人工智能(AI)领域内的工程师、数据科学家、数学家以及科学工作者等专业人士设计,旨在为读者提供一个坚实而全面的数学基础,帮助他们在AI领域内取得成功。 #### 关键知识点详解 **1. 数学与AI的关系** - **数学在AI中的作用:**本书强调了数学对于理解和构建AI系统的重要性。通过数学工具和技术,可以更有效地处理数据,建立模型,并评估算法性能。 - **AI市场的流动性和方向性:**作者提到,AI市场如同一条河流,其中某些部分的发展速度远快于其他部分。因此,理解这一市场动态并具备相应的数学技能至关重要。 **2. 本书内容结构** - **章节概览:**本书涵盖了多个关键主题,包括但不限于回归分析、神经网络、卷积技术、优化方法、概率论、马尔可夫过程、微分方程等。 - **实践应用:**书中不仅提供了理论讲解,还包含了大量实际案例研究和应用示例,使读者能够将所学知识应用于现实世界的问题解决过程中。 **3. 重点主题解析** - **回归分析:**这是一种统计方法,用于确定变量之间的关系。在AI领域,回归分析常被用来预测连续值的结果,例如房价预测或股票价格预测。 - **神经网络:**神经网络是一种模仿人脑工作原理的计算模型,广泛应用于图像识别、自然语言处理等领域。书中深入探讨了不同类型的神经网络及其应用场景。 - **卷积技术:**在计算机视觉任务中尤为重要,如图像分类、目标检测等。通过卷积操作,可以从输入图像中提取特征。 - **优化方法:**优化是机器学习的关键组成部分,用于最小化或最大化特定函数。书中介绍了多种优化算法,如梯度下降法等。 - **概率论与统计:**这些是数据分析的基础,对于理解不确定性、做出决策至关重要。书中详细讨论了如何利用概率论和统计方法来支持AI系统的开发。 - **马尔可夫过程:**这是一种随机过程模型,在很多领域都有应用,特别是在预测未来状态时非常有用。书中阐述了如何利用马尔可夫过程来建模和预测时间序列数据。 - **微分方程:**在物理模拟、信号处理等多个领域都有广泛应用。书中探讨了如何利用微分方程来解决实际问题。 **4. 实战应用技巧** - **数据可视化:**通过图形展示数据可以帮助更好地理解数据模式和趋势。书中提供了实用的数据可视化技巧。 - **空间变换与降维技术:**这些技术对于处理高维数据集非常有用,可以简化数据结构,提高算法效率。 - **图像处理:**包括图像识别、分类、分割等任务。书中详细介绍了图像处理的基本方法和技术。 **5. 成功要素** - **语言统一:**书中教授如何在AI、机器学习、数据科学等领域中使用一致的语言进行交流。 - **模型整合:**通过将机器学习模型和自然语言处理模型整合到同一数学框架下,提高了模型的一致性和可解释性。 - **图论与网络数据:**书中提供了处理图结构数据的有效方法,这对于社交网络分析、推荐系统等场景非常重要。 #### 结语 通过阅读《Essential Math for AI》,读者不仅能够掌握必要的数学知识,还能学会如何将这些知识应用于解决复杂的AI问题。本书通过结合理论与实践,为读者提供了一个全面的学习资源,使其能够在日益发展的AI行业中保持竞争力。
2024-11-04 11:14:47 27.45MB 人工智能
1