针对表面肌电信号(SEMG)的非平稳性及小波包变换系数维数过高的问题,提出一种小波包主元分析和线性判别分析相结合的表面肌电信号动作特征识别新方法。以表面肌电信号用于智能轮椅为例,对采集到的两路SEMG信号进行小波包主元分析,提取SEMG信号的运动特征矩阵,并将运动特征矩阵输入到线性判别分类器进行分类,实现了前臂动作识别。试验表明:该方法能够将小波包系数矩阵由16维降到4维,并且对前臂的四种动作模式(握拳、展拳、手腕内翻和手腕外翻)的平均正确识别率达98%,与传统的小波包变换相比有较高的识别率。
1
PCA是Principal component analysis的缩写,中文翻译为主元分析。它是一种对数据进行分析的技术,最重要的应用是对原有数据进行简化。正如它的名字:主元分析,这种方法可以有效的找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,揭示隐藏在复杂数据背后的简单结构。它的优点是简单,而且无参数限制,可以方便的应用与各个场合。因此应用极其广泛,从神经科学到计算机图形学都有它的用武之地。被誉为应用线形代数最价值的结果之一
2021-12-01 09:11:03 1.77MB 机器学习
1
很详细的介绍了主元分析法,希望有助于你。
2021-11-22 00:44:25 526KB pca 主元分析法
1
针对多向主元分析(multi-way principal component analysis,MPCA)算法用于间歇过程实施监控时需要将三维数据转换为高阶的二维矩阵,从而易导致算法的计算量大,且会丢失一些有用信息的情况进行了研究,提出了一种新的间歇过程故障诊断方法——二维主成分分析法(2-dimensional principal component analysis,2DPCA)。该算法首先利用各个批次的二维矩阵构造协方差矩阵,进而求得所有批次协方差矩阵的平均值进行建模,大大降低了计算复杂度,运算时间较MPCA缩短了19/20到3/4,且无须占用太多存储空间;同时,2DPCA计算协方差矩阵较MPCA更为准确,取协方差矩阵的平均值能够更加精确地反映不同类型的故障,在一定程度上增强了故障诊断的准确率。最后,通过将所提出的方法应用于青霉素发酵过程的监控中,验证了该算法的有效性和准确性。
1
主元分析和核主元分析matlab程序里面有说明 还有知识的讲义
1
基于主元分析和聚类的船舶机电设备性能变化趋势的提取.pdf
2021-08-21 13:03:50 234KB 聚类 算法 数据结构 参考文献
基于主元分析-模糊C均值聚类优化黄霉素发酵过程.pdf
2021-08-20 09:13:53 292KB 聚类 算法 数据结构 参考文献
为了有效提取表面肌电信号SEMG(Surface Electromyographic)的特征,更好的识别人体上肢运动模式,提出了一种小波包核主元分析(WPKPCA)和支持向量机(SVM)相结合的新方法。通过虚拟仪器采集桡侧腕屈肌和肱桡肌两路表面肌电信号,应用小波包核主元分析法对表面肌电信号进行特征提取,采用支持向量机对表面肌电信号特征数据进行分类识别。实验结果表明,采用此方法能够从表面肌电信号中识别出握拳、展拳、手腕内翻和手腕外翻4种动作,更能有效提取表面肌电信号信息,动作识别率高达98%。
2021-07-29 10:54:34 568KB 小波包核主元分析
1
4基于PCA_RBF神经网络的WSN数据融合轴承故障诊断_徐桂云.caj
2021-06-13 14:06:19 780KB PCA 主元分析 故障诊断
1
主元分析(PCA)MATLAB实现(NIPLS)+实例
2021-06-06 14:06:09 1KB 主元分析 PCA 降维 去噪
1