基于WPKPCA和SVM的SEMG动作识别方法

上传者: 38734492 | 上传时间: 2021-07-29 10:54:34 | 文件大小: 568KB | 文件类型: PDF
为了有效提取表面肌电信号SEMG(Surface Electromyographic)的特征,更好的识别人体上肢运动模式,提出了一种小波包核主元分析(WPKPCA)和支持向量机(SVM)相结合的新方法。通过虚拟仪器采集桡侧腕屈肌和肱桡肌两路表面肌电信号,应用小波包核主元分析法对表面肌电信号进行特征提取,采用支持向量机对表面肌电信号特征数据进行分类识别。实验结果表明,采用此方法能够从表面肌电信号中识别出握拳、展拳、手腕内翻和手腕外翻4种动作,更能有效提取表面肌电信号信息,动作识别率高达98%。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明